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FOREWORD

This report, prepared by the Dynamics and Loads Section, Martin

Marietta Corporation, Denver Division, under Contract NAS5-I1996,

presents the results of a study whose purpose was to develop a

computer program system for dynamic simulation and stability

analysis of passive and actively controlled spacecraft. The

study was performed from May 1973 to April 1975 and was admin-

istered by the National Aeronautics and Space Administration,

Goddard Space Flight Center, Greenbelt, Maryland, under the di-

rection of Mr. Joseph P. Young.

The report is published in four volumes:

Volume I - Theory

Volume II - Program Users' Guide

Volume III - Demonstration Problems

Volume IV - Program Listing
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ABSTRACT

A theoretical development and associated digital computer program

system for the dynamic simulation and stability analysis of pas-

sive and actively controlled spacecraft is presented. The dynamic

system (spacecraft) is modeled as an assembly of rigid and/or

flexible bodies not necessarily in a topological tree configura-

tion. The computer program system may be used to investigate

total system dynamic characteristics including interaction effects

between rigid and/or flexible bodies, control systems, and a

wide range of environmental loadings. Additionally, the program

system may be used for deslgn-of attitude control systems and for

evaluation of total dynamic system performance including time do-

main response and frequency domain stability analyses.

Volume I presents the theoretical developments including a des-

crfption of the physical system, the equations of dynamic equi-

librium, discussion of kinematics and system topology, a complete

treatment of momentum wheel coupling, and a discussion of gravity

gradient and environmental effects.

The development of synthesis and analysis techniques for the

linearized system includes a discussion of the numerical linear-

ization technique, procedures for definition of system transfer

functions, and linear time domain response.

Volume II is a program users' guide and includes a description of

the overall digital program code, individual subroutines and a

description of required program input and generated program out-

put.

Volume III presents the results of selected demonstration prob-

lems that illustrate all program system capabilities.

Volume IV contains a listing of the digital code.
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Applications of such methods and program systems are numerous

and include simulation of the Space Shuttle payload deployment/

retrieval mechanism, solar panel array deployment, antenna de-

ployment, analysis of multispln satellites, and analysis of

large, highly flexible satellites.

Our approach provides a general-purpose modeling capability for

dynamic simulation and stability analysis of passive and actively

controlled spacecraft. In particular, the following items are

considered: (i) time domain solution of the nonlinear differen-

tial equations of motion that describe total or nominal response*

of the complete spacecraft system idealized as a collection of

interconnected flexible (or rigid) bodies, (2) linearization of

the governing equations by numerical means, (3) time domain so-

lution of the linearized equations that describe the perturbation

response of the complete spacecraft system about some predeter-

mined (calculated or user-specifled)nominal motion, (4) general

frequency domain stability analysis corresponding to the linear-

ized spacecraft representation, and (5) provision for arbitrary

(explicitly time-dependent) loadings and environment interaction

such as gravity gradient and thermally induced deformations re-

sulting from solar radiation.

B. DESCRIPTION OF THE PHYSICAL SYSTEM

The physical system undergoing analysis may be generally descri-

bed as a cluster of conti_uous, flexible structure8 .(bodies) that

comprise a mechanical sy---stem such as a spacecraft. The entire

system (spacecraft) or portions thereof may be spinning or non-

spinning. Member bodies of the spacecraft are capable of under-

going large relative excursions such as those of appendage de-

ployment, or rotor/stator motions. The general system of bodies

is, by its inherent nature, a feedback system wherein inertial

forces (such as those due to centrifugal and Coriolis accelera-

tion) and the restoring and damping forces are motion dependent.

Also, the system may possess a control system, wherein certain

position and rate errors are actively controlled through use of

reaction control jets, servomotors, or momentum wheels.

* The total response of the dynamic system may be, in certain

cases, considered to be equilibrium state motion (nominal

response) plus perturbation motion with respect to the

equilibrium state.
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Bodies of the system maybe interconnected by l_near or nonl_near
springs and dampers; they maybe interconnected via a mechanism
that is a combination of gimbal and slider block, or any combi-
nation of the above. Also, any two bodies of the system maybe
free (one from the other) and possess six degrees of relative
motion freedom. Also, several or all of the s_x degrees of rel-
ative motion freedom, between two bodies, maybe a prescribed
function of time (including zero motion).

For purposes of further introduction of the physical system, let
us consider an illustrative example, such as the system of bodies
of Figure I-I, and let this examplebe the prototype for all sub-
sequent discussion and development.

In Figure I-i, we have deliberately indicated a nontopological
tree configuration. There are five hinges and four bodies, thus
one closed path. Consecutive integer labels are used for body
reference points, for hinges, for sensor points, and for momen-
tum wheels. The numerical or_r within each of the four label

sets ma_om;however, it is understood that b_ (which

may be any body of the system) is associated with hinge i.

For each body of the system, there is a body-fixed, right-handed

reference frame, whose origin may be at the body's mass center

or at some structural hard point on the body (a body's elastic

deformation is measured in its reference frame).

In this work a hinge is defined to be a pair of structural hard

points (see Figure 1-2) with a point situated on each of two con-

tiguous bodies. In Figure 1-2, point p and point q comprise a

hinge. Clearly, a typical body may contain one or more hinge

points, but a hinge may be associated with only two bodies.

Hinge i is given special consideration. It is also a pair of

points; but one of the pair is coincident with the reference

point of body i, and the other point of the pair is coincident

with the inertial origin. Thus, motion "across the hinges" is

used to represent system motion. The reference point of body l

is located with respect to the inertial origin by an inertially

referenced position vector. The attitude of the reference frame

of body I, with respect to the inertial frame, is represented by

three Euler angles. Thus, there are six positlon/attltude co-

ordinates associated with hinge I.

1-3
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Each of the remaining hinges is considered in a manner somewhat

similar to that of hinge i. Referring to Figure 1-2, we note

that there is an orthogonal reference frame attached to point p

and another to point q. The triad of point p may have a "natu-

ral" (or undeformed) misalignment with respect to the triad of

body point m plus additional misalignment due to elastic d___e__
formation. The same relationship is true concerning the points

n and q.

Now there are, associated with the hinge of points p and q, six

relative position/attitude coordinates. Point q is located from

point p with a p-frame referenced position vector. The attitude

of the q-frame with respect to the p-frame is represented by

three Euler rotations. Thus, if NH is the number of system hinges,

then there are 6 x NH position coordinates to be used in conjunc-

tion with modal displacement coordinates to define the systemVs

position state. Let it be noted that only the time variable

position coordinates of the 6 x NH set of candidates are consi-

dered as state vector elements (the position coordinates whose

rates are constrained to zero are not included; however, the po-

sition coordinates themselves need not be zero).

The system of bodies generally has a number of so-called "sensor

points." We define a sensor point to be a structural hard point,

which has a rlght-handed orthogonal reference frame attached,

that is used for a variety of purposes. A sensor point may be

used to enable the program system to monitor the position, atti-

tude, or the rates associated with a specific structural hard

point. For example, a rate gyro, a star tracking device, or

other motion/posltlon sensing device is physically situated at a

sensor point. Also, a sensor point is used as a point of appli-

cation of a force or torque vector (see Figure 1-2).

The system of bodies may contain built-ln momentum wheels, some

of which are constant speed wheels and others are variable speed.

The variable speed momentum wheels are motor driven; the shaft

torque results from a given control law. Each momentum wheel

of the system must be associated with a sensor point because,

for a general flexible body, the gyroscopic coupling is influ-

enced by elastic motion.

As is indicated in Figure I-i, the system may be in a non-topo-

logical tree configuration. The methods employed in this develop-

ment are such that closed loop configurations CzenerallY refer-

red to as nontopolo_ical) may be considered. If every body of

the N-Body system is rigid, then of course there may be no closed

loops, because such a system has an indeterminate "load path."
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To accommodateclosed loops, the systemmust contain sufficient
structural flexibility (compliance), and therefore modal dis-
placement coordinates, that the kinematic equations of intercon-
nection constraint are algebraically consistent.

The program development is such that none, several, or all bod-
ies of the N-Bodysystem maybe flexible. The system maybe
"forced" by such environmental factors as gravity, gravity gra-
dient, solar pressure, thermal gradient, and aerodynamicdrag.

The computer program system described herein falls into several
categories of capability: (i) synthesis and time domainsolution
of the nonlinear differential equations of motion of the com-
plete spacecraft system idealized as a collection of intercon-
nected flexible (or rigid) bodies, (2) linearization of the
governing equations by numerical means, (3) time domainsolu-
tions of the linearized equations that describe perturbation
responseof the complete spacecraft system about somepredeter-
mined (calculated or user-specified) nominal motion, and (4) gen-
eral frequency domain stability analysis corresponding to the
linearized spacecraft representation.

1-6
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A. INTRODUCTORY DISCUSSION

[II-l]

In-2]

[11-3]

[I1-4]

The state equations governing the dynamic response of a system

of interconnected flexible bodies, that may be actively or pas-

sively controlled and that may be "forced" by environmental fac-

tors such as solar pressure, gravity gradient, aerodynamic drag,

etc. are presented here in a concise summary form as:

{U}j [m]j

{_}j- [s_]j {u}j ,

subject to the constraint equations

[II-5] _ [b]j {U}j = {_}.
]

In Equations II-i through II-5 the index J ranges from i through

the number of bodies of the system. Equations II-i through

11-4 represent n first order, nonlinear, ordinary differential

equations while Equation 11-5 represents m additional conditions

of kinematic constraint. Thus, the dimension of the state space

for a given system of controlled bodies is (n-m). That is,

there are n-m state variables required to define the configura-

tion at any instant of time t.

State variables of the configuration space include absolute ve-

locities, {U}j, modal displacements {_}j, pgsition 6-66r_Ina_"

(both _r and cartesian p_) f[_}, and additional vari-

ables {6} that we will subsequently refer to as control vari-

ables; they are variables associated with the differential equa-

tions that define a given control law. However, they may reflect

any other auxiliary differential equations that are necessary

to define the overall feedback system; for example, they may in-

elude thermal equilibrium states or other state variables neces-

sary to complete definition of a state dependent environment.
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The right-hand sides of Equations II-I through 11-4 are func-

tionally dependent on all the state variables and time, although

the relationships may be only termed implicit at this point.

Let it suffice that, in a way of introduction, a description of

the nature of the governing Equations II-i through 11-5 be given

here, and that more explicit development and discussion follow

in subsequent chapters.

The Equations of II-i represent the dynamic equilibrium equations

for the typical jth body of the system. They are of the form

shown whether the body is treated as rigid or flexible. They

state, in effect, that a deformation dependent mass matrix [m]j,

postmultiplied by a vector of relative acceleratlons {0}j, pro-

duces a vector of inertial forces that is balanced by all other

state and time dependent forces {G}. and interconnection con-
3

straint forces, [b]__ {X}. The vector {G}j includes inertial

forces due to centrifugal and Coriolis acceleration, as well as

elastic restoring forces, damping forces, control actuator for-
m

ces, and so forth. The constraint forces [b]_ are necessary

in order that the kinematic constrain= equations (11-5) are sa-

tisfied; eleme_of___the_vector {X} are actually Lagrange mult%-

pliers, evaluated and used in the solution process.

The Equations of 11-2 simply represent a selection transforma-

tion, because the vector of modal velocities {_}j is a subvector

of {U}j. The Equations of 11-3, used to develop {B}, represent

a kinematical transformation, transforming nonholonomic veloc-

ities to time derivatives of position coordinates. Finally,

the Equations of 11-4 are auxiliary differential equations that

are user defined and may be used to implement control dynamics

and other feedback effects.

The constraint Equations of II-5 are kinematic conditions of a

form similar to those of Equation 11-3. In either case, we have

a velocity transformation. We might term Equation 11-5 an ac-
tive set of kinematic conditions and those of Equation 11-3 a

passive set. The active set is used to calculate m of the de-

pendent elements of the {U}j vectors in terms of the remaining

independent elements and the prescribed velocities {_}, some of

which may be zero and some user-defined functions of time. Thus,

the constraint equations are of a general form because nonholo-

nomic, rheonomic conditions may be so represented. Given that

the {U}j vectors satisfy the required conditions of Equation

II-5_ $hen the position ratesp {B}, may be evaluated via the

passive conditions of Equation 11-3, resulting in a kinematically

consistent system.
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[11-7] [b]j

[11-8] [B]
J

thus

Note that there are m equations of constraint represented by

11-5. There are also m Lagrange multipliers in the vector {A}.

Most often, in studies of dynamic systems, the Lagrange multi-

pliers and the dependent velocities and accelerations are en-

tirely eliminated from the governing equations. Such is not

the case in our development. We have chosen to invoive Lagrange

multipliers in our equations for two reasons: (i) we wish to

monitor the multiplie_as a functionof system motion, as they

are intercon_nection forces an_ tor=ums, and (2) for purposes of

numerical implementation it is convenient to calculate and use

the [k} vector in Equation II-i. The Lagrange multipliers are

calculated by differentiating Equation 11-5 andcombining that

result with equation II-i giving

[11-6] {A} = [b]j [m]_ I [b]_ {_) - [_]j {U}j + [blj

Notice the following functional dependencies:

" f ({_}j, {_}j 1,

= f ({_}j, {_}j),

[11-9] {_} = f ({B}, {_}, {U}) ,

[II-lO] {_}j = f {U}j ) ,

[11-I1] {_} = f '{B}, (_}, {_}, {_}, {_}; t),

)[11-12] {G}j = f {_}, {U}, {_}; t ,

[II-13] [m]j - f ({_}j),

t:_-_ c_J_-_(_, _, _, _>),
thus

c_-_ _ =_ (_. _, _, (_, (_, _),
"[II-16] and (U} = f ({_}, (_)}, {U}, {_}, {_), (_}_ t )

where, in the above notation, we mean that the elements of the

matrices/vectors on the left are functions of the elements of

the vectors on the right. The c_ of evaluations i_

is that which musst be followed in the solution process.
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The differential equations of motion for the system are therefore,

of the general form:

( )[11-17] Yi = f Yl, Y2, "" , Yn-m' t ,

and the state vector and its time derivative are arranged as fol-

lOWS:

m

{y} = {u}1

{u}2

{U}NB

81

S2

BN8

61

62

6Nd

m

= p{o} 

!{O}z

{_}NB

B1

82

BN_

_t

62

D

6N6

with NB the total number of bodies of the system, NB the total

number of position coordinates necessary to orient the system

and N_ the total number of auxiliary (control) differential

equations required•
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Now, given that the {y} vector is known (numerically) from pre-

scribed initial conditions or from numerical integration of {2},

the primary task of the solution process is to numerically es-

tablish the {9} vector. The {y} vector is numerically (step by

step) integrated so as to produce an incremented {y} vector, thus

a sequence of time point solutions.

In way of summary, a narrative description of the steps (numeri-

cal evaluations) necessary to produce {9} given (y}, follows.

The matrices [B]j and [b]j are kinematic coefficients that de-

pend on position and modal displacement variables, and are eval-

uated as the first step.

Now, if available numerical techniques (also computer software

and hardware) were absolutely accurate, we would be assured that

the {U}j vectors, resulting from numerical integration of the

{U}j vectors, would satisfy the constraint equation II_5. This

is not the case, therefore the second step of the solution pro-

cess is to calculate the dependent elements of the {U}j vectors

by using Equation II-5. In fact, due to anticipating numerical

inaccuracies, only the independent elements of the (U}j vectors

are obtained by numerical integration. There are only n-m "in-

tegrators" involved in the solution process even though all of

the elements of the {0}j vectors are numerically evaluated (by

use of Equation II-l); we have good numerical resolution in the

independent {U}j elements due to using the Lagrange multipliers
{_}.

A kinematically consistent system results from satisfying Equa-

tion II-5. The {U}. vectors may now be used with the selection
3

and kinematic transformations as indicated by Equations II-2 and

11-3 to produce (numerically) all the modal velocities { and

position coordinate rates {8} completing the third step of the

process.

Sufficient calculation has been completed to this point to then

evaluate.the control variable rates as per Equation II-4, pro-

ducing {_}. During the process of calculating the {8} vector,

all of the required control actuator torques (or forces) are

calculated, because sufficient numerical information is avail-

able. All of the constituents of the torques/force vectors [G}j,

are now available and therefore {G}j, [m]j and [5]j are numeri-

cally evaluated, (refer to the functional expressions of Equa-

tions II-ll through II-14), which completes the fourth step of

the process.

II-5
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With reference to Equation 11-6, we note that there is now suf-

ficient numerical information to evaluate {_}, which is then used

in Equation II-I to calculate the [U}j, completing tke fifth and

final step of the process.

It is noted in the above discussions that the solution process

may be carried out through completion, providing the state vec-

tor is numerically known. At any step of a simulation, the {y}

vector is known, of course, as the result of numerical integra-

tion. The initial state vector is another matter. It is diffi-

cult, if not impossible, for a user to prescribe (U}_ vectors

that are klnematically consistent with the conditions of Equa-

tion 11-5; also, the nonholonomic velocities of {U}j, when con-

sidered as a complete set, are of a somewhat abstract nature.

The user iS in a much better posture to prescribe initial values

of {_} and {_} (the initial velocities that are physically mean-

ingful to him). Thus, to initiate the simulation (that is, to

create an initial state vector from information the user is in

a position to prescribe) some preliminary steps must be taken,

as follows.

The user must prescribe initial values of the {_}j, {%}j, {B},

{8} and {6}.vectors; also the variable speed momentum wheel spin

velocities 8. Now, in that {_} (the prescribed position rates),

are explicitly dependent on time and are always available, the

kinematic Equations II-3 and II-5 may be used together to estab-

lish initial values of all {U}j. The question inevitably arises:

are the number of equations represented by II-3 and 11-5 suffi-

cient to solve for the elements of the {U}j? Let us consider

the typical {U}j vector. We note that there are six reference

frame velocities in each {U}j, namely, _x' _y' mz' u, v, and w.

There are also six relative velocities associated with each

hinge. Now, if the system is a topological tree configuration,

then the Equations of II-3 and II-5 comprise exactly the re-

quired number of equations to establish the reference frame ve-

locities; that is, there are as many hinge points as there are

bodies and even if every body were rigid, the system would be

determinate. In this case, the initial sets of six reference

frame velocities are computed via Equations 11-3 and II-5; the

prescribed initial {_} vectors and momentum wheel spin veloci-

ties are simply placed in the appropriate {U}j vectors, and the

initial state vector is thus defined.

11-6



In the event that the system is not a topological tree configu-
ration, then there are more equations (11-3 and 11-5) to be
satisfied than there are reference frame velocities (or in other
words, there are morehinges than bodies). In this case, ele-
mentsof the (_}j vectors must take on the responsibility of
helping to satisfy the kinematic conditions. For each hinge
in excess of the numberof system bodies there must be at least
six deformation modes, represented by _ coordinates, and they
must be distributed throughout the system in such a way that
the kinematic conditions of Equation 11-5 are independent.
Clearly then, when there are more hinges than bodies (nontopo-

logical tree), one or more of the bodies must be flexible for

the system to be determinate. Now, when the configuration is

nont_pological, the user will specify initial values for all of

the _, but he must acknowledge that they are not all independent

and the dependent ones (automatically determined by the program)

are calculated and replace the values that he has specified.

From these considerations, we note that the initial state vector

is created by the program from information that is user supplied

and that is physically meaningful to him. His only concern, re-

garding initial conditions, is: whether he has supplied an ade-

quate description of system flexibility, in the event of a non-

topological tree configuration, for the system's kinematical

equations to be determinate.

B, DERIVATION OF EQUATIONS OF DYNAMIC EQUILIBRIUM

The differential equations of motion and auxiliary equations that

characterize a physical system may take any one of several equi-

valent forms. By equivalent form, we mean that the same physi-

cal system can be characterized by more than one set of mathe-

matical variables; in any case, the number of variables must be

the same. For example, the motion equations for a rigid body

might be derived by using Lagrange's equations (resulting in

six second-order equations), or one might use the Newton-Euler

equations where translational motion is represented by three

second-order equations while rotational motion is represented

by six flrst-order equations (three moment-momentum equations

and three attitude equations). In each case, there are 12 state

variables.

11-7
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There are a variety of alternative methods of analytical dynamics

that one may select from to develop his final (programmable)

equation format. A timely and valuable commentary accompanies

the comprehensive comparative evaluation of these methods in a

recent report by Likens*. The basis for our development is ef-

fectively included in his discussion.

Our intent is not to highlight any particular method of analyt-

ical dynamics as being superior to the others. Clearly, the

methods are all equivalent providing that they are developed

through completion without any compromising simplifications.

The choice of method is made after considering the requirements

associated with a particular problem or computer simulation pro-

gram. Our development begins with a Lagrangian approach, then

through algebraic manipulation we arrive at the format of Equa-

tions II-i through 11-5.

Lagrange's equations for the general situation appear as
m

[Zl-18] _ + +-- - qj + ajl xi
_qj _qj _qj 1

for (j=l,2,'' n)

n

_ aij qj + air - 0

j=l

for (i=1,2, "" m)

In these equations, T and V are system kinetic and potential en-

ergies, respectively, and D is the Rayleigh dissipation function

(accounting for internal damping). The generalized constraint
\

forces(_ aji ll) augment the generalized forces Qj (that arise
% J.

due to the action of external factors) and are necessary in order

that the additional conditions of constraint (the second set of

Equation If-18 be satisfied. The form of the Equations II-18

is complete and general, in that they include unconservative

forces (explicitly time dependent Qj and dissipitive forces

8D/_qj and the auxiliary constraint equations (the second set

of Equation II-18) are in an all encompassing form, because

*Likens, P. W., "Analytical Dynamics and Nonrigid Spacecraft Sim-

ulation," Technical Report 32-1593, J_t Propulsion Laboratory,

Pasadena, California, July 15, 1974.
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holonomic conditions maybe so represented. The coefficients
(aij , j-l, 2, .., n; t) maydependexplicitly on the time (t),
thus the constraint conditions as shown account for both rheo-

nomlc and scleronomic situations.

In the equations, n is the number of generalized coordinates in-

volved in the representation and m is the number of auxiliary

conditions of constraint. Note that, although the qj are gener-

alized coordinates (as they must be for the Lagrangian formula-

tion) they are independent onZy in the isolated case when m=O,

or when there are no auxiliary constraint conditions. The wri-

ter has observed that some engineers share a misconception on

this point, thinking that if the variables qi are not indepen-

dent then they are not generalized coordinates. In view of the

m constraint equations, we simply have a set of generalized co-

ordinates that are not independent.

In cases where all of the constraint equations are holonomic,

it is theoretically possible to eliminate m of the qi in terms

of the remaining n-m. However, if any of the constraint condl-

tions are nonholonomic, a Lagrange multiplier (%i)
must be used

% r

in conjunction with that equation. Lagrange multipliers may,

of course, be used for either holonomic or nonholonomlc con-

straints.

In that the simulation program includes mathematical representa-

tion of active or passive control for elements of the spacecraft

system, there are state equations involving control variables

that are additional to II-13. The manner in which the additional

control equations enter into the composite system state equations

is the same whether we are talking about the form given by Equa-

tion II-i or that of Equation II-18. The control system state

variables retain their identity in either case although the con-

trol forces/torques necessary to "close the loop" are trans-

formed differently. In the case of Lagrange's equations, the

control torques contribute to the generalized forces Qj whereas

in the case of the summary Equations II-l, they contribute to

elements of {G} and may be interpreted to be ordinary forces or

torques, acting at a structural hard point (or at a sensor point).

Thus we will postpone further discussion of the control system

until later, concentrating on the "mainline" motion equations

until such a point when we can clearly indicate control system

coupling.
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In order to "solve" Lagrange's equations of motion, one must first
define the explicit form of the kinetic and potential energy func-

tions, the dissipation function D, and he must also define the

form of the transformation relating ordinary cartesian position

coordinates (positioning the typical system particle or element)

to the generalized coordinates qi; the form of the transformation

is necessary to be able to express generalized forces Qj in terms

of external ordinary forces. Having defined the form of the en-

ergy functions and coordinate transformation, one merely per-

forms the indicated differentiations (II-18). He has not yet

solved the motion equations but has only explicitly defined a

system of ordinary second-order differential equations, which

in many cases are nonlinear, and which require solution using

numerical integration techniques.

With numerical implementation and digital programming in mind,

we wish to recast the form of the ordinary differential equa-

tions. First of all, we would like for them to result in canon-

ical first order form (the highest time derivatives appear un-

coupled on the left hand side). Also, we would like to group

complicated combinations of generalized velocities and displace-

ments so that we may replace such groups with new variable names.

The new variables we refer to have been called "quasl-coordi-

nates" in the literature. This will simplify the required com-

puter programming and minimize arlthematic computation. Also,

it helps considerably in organizing the numerical algorithms

necessary to evaluate the left hand side of the state equations.

Thus, recasting the form of the governing equations is suffi-

ciently justified.

We begin the recasting process by defining the forms of kinetic

and potential energy, and the required transformation. First

let us note that bodies of the system of flexible bodies are

tentatively treated as though they were completely independent,

one of the other. The influence of any one body on another is

accounted for through the additional constraint conditions and

the Lagrange multipliers. Thus, if we express kinetic and po-

tential energies for the typical body and apply Lagrange's equa-

tions to it, the ordinary differential equations pertaining to

it are simply a subset of Equation 11-18; and we will have ac-

counted for the total system through the representative form of

the typical body.
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The generalized coordinates chosen to represent the configuration
of the typical body include three Euler angles to indicate atti-
tude of the body fixed axis system relative to an inertial frame,
three projections (components)of the position vector from the
origin of the inertial frame to the origin of the body fixed ref-
erence system, onto the inertial axes, and N elastic displace-
ment coordinates. Wenote that the origin of the body fixed axis
system needn't necessarily coincide with the body's masscenter.
Also, the elastic displacement coordinates maybe measurements
of displacement at a discrete set of points on the body or they
maybe coordinates associated with normal vibration modes. In
either case, they represent displacements measuredin the body
axis system. For the r th flexible body, we tabulate its gener-
alized coordinates as:

{qr }

8

xllY

Z

_N

-- r

Attitude

Euler Angles

Body's Reference

Point Position

Coordinates

Elastic Displace-

ment Coordinates

Now, _here exists a transformation that relates a set of nonhol-

onomic velocities to the generalized velocities that is exten-

sively used in recasting the equations. The transformation

appears as follows:
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[II-19]
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1

X

Y

_2

_N
u

where in Equation 11-19 the vector of nonholonomic velocities

{U} contains the three projections (mx' _y' _z ) of the angular

velocity vector _ onto the body fixed axes (_ is the angular ve-

locity of the body reference frame), the three projections of

the reference point translational velocity (u, v, w) onto the

body fixed axes and the displacement rates {_}. The elements

of the transformation Yij (i, J=l, 2, 3) are direction cosines;

the submatrix [y] is an orthonormal rotation transformation re-

lating the attitude of the body fixed axis system to the iner-

tial frame. The submatrix [_] is also a rotation transforma-

tion; however, it is not orthonormal because it relates vector

components based on an orthogonal basis to those of a skew (non-

orthogonal) basis; namely the axes about which Euler rotations

are measured.

In short, we write

[n-20] {u} = [B] {4}.

Clearly the elements of [8] are functions of the three Euler

angles. There are 12 possible sets of Euler angles. Any one

set is valid for use in subsequent development; the resulting

equation form is independent of selection from the 12 sets of

angles.
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Elements of the transformation [B] maybe explicitly defined in
terms of three of the generalized coordinates (the Euler angles).

The kinetic energy expression for the rth body is most easily

expressed (initially) in terms of the nonholonomlc velocities

{U}. Having done this, [8] is used to replace {U] with [8] {q}.

The kinetic energy is then expressed completely in terms of gen-

eralized displacements and velocities (the form necessary for

applying Equation 11-18).

[lZ-21]

Kinetic energy for the _yplcal body is

T = ½/_.VodV

where _ is the velocity field, o is mass density, and where in-

tegration is carried out over the volume V of the body.

The inertial position of any point p of the body is (See Figure

II-l.)

[II-22] T = _ + _0 +

with _ being the inertial position of the body's reference point

(R, the origin of the body axis system), _0 positions the point

p" (which coincides with p in the undeformed configuration) from

point R, and where _ (x, y, z, t) is a measure of elastic dis-

placement.

The vectors T0 and _ are referenced to the body axis system,

thus

[1 -23] = [i j

a°d )

the elastic displacement _ is represented as the superposition

of a finite number of single valued space functions _k"
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The velocity field v is obtained as

k=l

[11-26] V R = J

with _R = --d_ •

dt

The velocity of the reference point R may be expressed in terms

of components referenced to either the inertial frame or the

body frame, that is

[11-27]

The unit vectors {i, J, k}, {I, J, K} are related through the

rotation transformation [y] and it follows that

E':I= [¥]

At this point, let us introduce the repeated index summation con-

vention to be concise. With this convention, when any two fac-

tors of a term have the same index, summation over the range of

that index is implied and the_slgn is deleted. For example,

the third term on the right of Equation II-25 is

and represents

Now, if we substitute 11-25 into II-21, the kinetic energy is
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+ 2v-R • t_-_ (_o +-_)_+ 2 vR • _'k_k

+2 [_x C_o+-_)] "_k_k I adV

or, integrating term by term over V,

[II-29] T - ½m [uvwJ {u v w}

+ ½ x y z xx xy. x

-- J -

-J J ,,_

L zx zy

+ ½ ejk _J _k

where we have used
I"

[II-30] m - Jr odV

v

Jxx "/ [(y + _yj _j)2 + (z + q_zj _j)2] cdV

+ 2(byyj + bzz J)[II-31] " Jxxo _j + (Cyjyk + Czjzk) _j _k
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i _t

with

[11-32] byyj - _V y _y] odV,

bzzJ " _V z _zJ cdV,

and

Cy3zk JV _yj _zk odV

Also, we have used

[11-33] axk

[II-34] ejk

and

- +a _,Sxo xJ j

cdV

' = byzk- bzyk+(CyJzk- Czjyk)_j'

and also,

.Jo+(bj+b.xj)_j+°x_.k_j_k.
All other quantities involved in Equation 11-29 are obtained by

cyclic permutation of the indexes x, y, and z. Finally, as the

kinetic energy is of quadratic form in the elements of {U}, we

may express it as a triple matrix product
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i_: _̧ ii

[II-38] T = ½ LUj [m] {U}

J -J -J
xx xy xz

with

[II-39] .[m] =

J -J
yy yz

J
zz

(Symmetric)

or in short,

[11-40] [m] = li lll-S I!IIi

s I
-S z y { dxl dx2

S -S "°
z x I dY 1 dY 2 dyN

S Id ""-Sy x zl dz2 dzN

m

m

I axl ax2 '' axN

I ayl ay2 "" ay N

I
m I azl az2 "° azN

fell el2 .- elN

I
e22 *, e2N

I
] *• eNN
I

Using Equations II-40, II-19, and II-38 gives

Clearly, the elements of [m] depend on only the _k; the elements

of [8] depend on the Euler angles and =herefore kinetic energy is

a function of generalized velocities and the generalized coordi-

nates themselves, thus_ the functional notation

/T = T (ql, q2, "" qn; ql, q2, °" qn

is applicable; terms such as _T/aqj will come about and play an

important role in the simulation.
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To continue it is necessary to express the potential energy V

and dissipation function D. Let us assume that the elastic

strain energy can be written as a positlve-definite quadratic

form in the elastic displacement coordinates, or

[11-42] V - ½ L_J [k] {E};

the symmetric matrix [k] is developed by standard finite ele-

ment techniques such as those embodied in NASTRAN. In the event

{E} is a set of normal modal coordinates, then [k] is diagonal

with the jth diagonal element appearing as

[11-43] kjj - _

with _j being the jth natural frequency. Of course, normaliza-

tion of the eigenvectors (mode shapes) is assumed such that the

generalized mass for the jth vibration mode is unity.

Now_ since

[11-44] {$} = [0101_N] {q}

- [s_] {q}
it follows that

[ii-45]v = ½ Lqj [s_]T [k][s_]{q}.

Similarly, D is written as

[11-46] D = ½ Lq j [S_] T [C] [S_]{q},

the matrix [C] being equivalent viscous damping for the struc-

ture; it is also developed using standard finite element tech-

niques.

Let us now refer back to Lagrange's Equations (11-18), and re-

express them in matrix format
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and

[II-48] [a]{$} - -{at} •

What is meant by [B j] and [m j] is the partial derivative of

every element of [B] and [m] with respect to the j_h generalized

coordinate.

Let us now define the ordinary momenta

[II-49] {p} - [m] [8] {$}

- [m] {u} .

Also, since {U} = [_] {q}

[II-30] it follows that {q} = [8]-1 {U}.

Using Equations II-49, II-50, II-47, and 11-48, we may write

[11-51] {p}--[8] -IT [s_]T([k] [S_] {q} + [C] [S_] {q})

+[8]-IT {Q}+ [8]-IT({[4j [$,j]T {p}}. [_]T {p})

+½ [8]-IT {[uJ [m,j] {U}} + [8] -IT [a]T {I},

and

[II-52] [a] [8]-I {U} - {-at}.

Several observations can be made on studying Equations II-51 and

II-52:

First of all, recall the form of [8] and [S_] (Equations II-19

and II-44). It is clear from these forms that

[II-53] [8] -IT [S_] T - [S_] T

[II-54] and that [S_] {q} - {_}

[n-55] and [S_] {q}-{_}.

Also, since _he elements of [m] depend only on _k'

elements of I[uJ [m,j] {U}lare null, thus

S
[I1-561 [8]-lT / [.UJ [re,j] {U} = [U] [re,j] {U} .

II-20
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Further, we note that the matrix [8] -IT transforms the general-

ized forces {Q} to forces "acting in the quasi-coordinates," or

let us call

[11-57] {Oex} = [8] -IT {Q},

thus {Gex) contains ordinary forces and moments due to external

sources and corresponds to time derivatives of the ordinary mo-

menta.

Because the transformation [8] depends only on the Euler angles,

it follows that only the first six elements of the column

are non-zero, and one finds after considerable algebraic manip-

ulation that this column may be reexpressed as

[_] (p)

or

[11-58] [_] {p) =
0 W --W

z y

-_ 0
z x

-_ 0
y X

0

-W

V

0

z

0_
Y

I

w -v I
I
I

0 u
t

I
-u 0

. t
!

-_ IZ y
I

0
X I

I
-_ 0 I

x
I

m i n

P(_x)

p(_y)

p(,,,z)

p(u)

p (v)

p(w)

- ,% 1T

With these observations and definitions, the Equations 11-51 and

II-52 may be reexpressed as

[II-59] {p} _ {Gex}- fOt {'_} - [CI {_} + [_]{P}

+ % {[uj[m,j]{u}}+ [b] T {x},

[II-60] and [b]{U} - {&}
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where we have used

[11-61] [b]-- [a] [_]-I

and

[11-62]{_} ffi-{at}"

Notice that the constraint equations (11-60) are now expressed in

terms of the nonholonomic velocities {U}; the coefficients [b]

are obtained directly from relatively simple, vectorial expres-

sions of kinematic constraint. The same [b] coefficients are

transposed and used to multiply {X}, producing constraint forces/

torques corresponding to the ordinary momenta.

If we now define the {G} vector to be

½ [UJ [m j]{U} - [&l{U}

it follows that we may write dynamic equilibrium equations for

the typical r th body as

to he used in conjunction with system kinematic constraint equa-

tions

[II-65]_[b]r_ {U} r = [g}
r

which is the same form as that given by Equations II-i and 11-5.

The last three terms of {G] given in Equation 11-63 are inertial

forces that involve velocities and displacements of the body.

The matrix [m] is an instantaneous inertia matrix, depending on

instantaneous values of the deformation coordinates {_}. The

centrifugal and Coriolis effects are completely accounted for

within the framework of the assumed velocity field (given by

Equation II-25). These effects would not be accounted for if

we neglected "tangential" velocity due to elastic displacement;

that is, if we assumed that I_ x _l<<l_ X _Ol" In this case, the

inertia would be constant, independent of [_}.
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An accurate definition of the dynamic equilibrium equations

clearly hinges on a complete and accurate definition of the con-

stituents of the {G} vector, which includes the inertia matrix
r

[m] r. Also, the kinematic coefficients [b]r must be developed

in an exact fashion. Kinematics and a more explicit development

of {G} are given in subsequent sections.
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Z C_ KINEMATICS AND SYST_,_ TOPOLOGY

From a Lagranglan formulation all of the generalized forces, not

derivable from a potential function, ordinarily appear as {Q} on

the right side of Lagrange's equations of motion. We have accounted

for internal damping forces with the use of Rayleigh's dissipation

function D and for generalized constraint forces through use of

Lagrange's multipliers.

Thus, the generalized forces that remain to deal with include those

due to external factors such as aerodynamic drag, solar pressure,

and other commonly encountered environmental loadings.

We also intend to treat control forces (servodrive torques, reac-

tion jets, etc.) as though they were external. They are not ex-

plicitly external, of course, because they depend on time through

position and rate errors that are functions of elements of the

state vector and on control system state variables that arise from a

given control law.

Let us assume that there is a finite number of points on the typ-

ical body where a force vector (or torque) is known to act. Each

of these force/torque vectors contributes to the generalized

forces {Q}. The generalized forces are calculated by expressing

the virtual work of the external ordinary forces in terms of vir-

tual displacements of the points of force application• The trans-

formation relating ordinary coordinates to generalized coordinates

is then used to define the explicit form of the generalized forces.

For example, suppose that a force fp and torque Tp act at point p

of the typical body. Their virtual work is

[11-66] 6W - f • _r + T • _O •
P p P P

Notice that we treated the virtual rotation 60 as a vector quantity.
P

This is valid, even though a general rotation is not a vector quan-

tity, for the virtual rotation is infinitesimal and therefore is

a vector. Further, because virtual displacements are infinitesimal,

we may express 6_ and 60 in terms of virtual displacements of
P P

the quasl-coordinates; that is
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[II-67] 67 = Ji jP t

6r

6r3_

+
_ qzP) ' - (yp

0, (Zp +
(Zp + nzp), 0, (Xp

_yj (Xp, yp, Zp)ICzj (Xp, yp, Zp)

+
m

Oxj (Xp, yp, Zp)

Oyj (Xp, yp, Zp)

j kJ(-_e x-

68
Y

68
z

Ozj (Xp, yp, Zp)

+ r°°xl

o L6O ]

where (6rl, _r 2, 6r3) are components of virtual displacement of

the body's reference point R, (68x, _Sy, _@z) are components of

virtual rotation of the body axis system, and (OxJ' _yJ' azJ)

jth
are components of the space function _j representing elastic

rotation at point p (modal slopes, for example).

Now, let us assume that the force and torque vectors _p and _p)

are referenced to the body axis system, thus they may be written
as

fxp-- I

f i
YP I

%fl •
!

T
YP

T

- zpj
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We note that virtual displacements of the quasl-coordlnates are

related to virtual generalized displacements by the same trans-

formation that relates nonholonomic velocities to generalized ve-

locities (See 11-19). It follows that the virtual work due to

[ii-71j6w- L_qj[3;T

and _ may be written as
P P

1

1

axl)p °yl)p azl)p

• g n

• • g

U_dq)p

The virtual work is also expressed

- (Zp+rlzp) Yp+nyp

zp+_ zp - (xp+nxp)

- (yp+qyp) Xp+nxp

1

i

i

#xl)p 'yl)p *zl)p

¢yN)p_xN)p #zN)p

and because 6qj is arbitrary and independent (it is treated as

though independent in the face of Lagrange multipliers and con-

straint equations) it follows that

[II-72] {Q}, [_]T [bp]T {T;}f

The Equations II-71 or II-72 have a noteworthy geometrical in-
(T %oao oo e r no
k r f

are components of the resultant torque vector T +(p0+q) x f
p p'

acting at the body's reference point R. The second three lines are

T '
zp I

f
xp I

f
YP I

f
_ zp_]

(6+N x 6)
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components of the resultant force vector fL' while the jth line

(j>6) corresponds to the standard procedure (of structural dynam-

icists) to calculate Q_j, or as it is usually expressed, general-

ized forces acting in deformation modes are

{Q} = [_]T if}.

Also, recalling the form of [8], (Equation 11-19), we note that

[_]T resolves the resultant torque vector (about orthogonal body

axes) to components about skew axes about which Euler rotations

are measured wnile [y]T resolves the resultant force vector (about

orthogonal body axes) to components along the inertial axes. Further,

we notice that [bp] is a matrix of coefficients that relates the

velocity of any point p to the vector {U}. This gives us some ad-

ditional insight as to why the same coefficients that are used in

the kinematic constraint equations (11-60) are used (in transposed

form) to multiply {_} producing resultant constraint forces.

Thus, we have pointed out the remarkable duality of purpose asso-

ciated with [b] type coefficients. They are initially expressed

by writing simple kinematic velocity relationships. The coeffi-

cients [b] T are then used to transform discrete ordinary forces

and torques to equivalent forces and torques acting through the

body's reference point R. The matrlx [8], which is also a velocity

transformation, is transposed to produce the transformation to

generalized forces (should they be desired).

For our ordinary momenta equations we simply wish to express {Gex}

which (following Equation II-57) is given by

[II-73] {Gex} p " [8] -IT {Q}

[bp ] f .

[II-74]

This {Gex} p given by 11-73 reflects only the contribution of the

force/torque acting at a single point p. The total {G } must be
ex

obtained by summing over all the points of the body where forces

and torques act, or

{Gex}- _ [bp i
i=l fPi
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[11-75]

Kinematic coefficients [bp] such as those of the previous example,

will be required throughout in our formulation of the state equa-

tions. They are used to synthesize the constraint equations, to

produce {G}, and they are even involved in the velocity transfor-

matlon of 11-3. It is therefore advantageous for us to think of

a "bank" or collection of all the required kinematic coefficients

to be put together in a semiautomatic fashion by using input

specifications to the digital program.

Sensor Point Kinematics - Force/Torque Transformations

Consider the typical structural hard point s (See Figure II-2).

Let us assume a right-handed triad is fixed to point s and that

the elements of the triad are unit vectors labeled _, _, and _.

Now body n (which has point s on it) also has a rlght-handed

triad fixed to point n. Suppose that, even when body n is in an

undeformed state, the s-triad is mlsaligned with respect to the

n-triad. When the body deforms there may be further angular mis-

alignment between the two triads. Thus, the relationship linking

the two sets of unit vectors is

with [sRs .] and [s_Rn] being orthonormal rotation transformations,

the first relating the "naturally" misaligned triads via constant

Euler rotations and the second accounting for additional rotation

due to the body's deformation at point s.

The structural deformation at point s is assumed to 5e sufficiently

small that the Euler rotations associated with [s.Rn] may be eval-

uated through use of

e2 _ [os] {_},

where [_s ] is a (3xN) matrix of modal rotation amplitudes (each

of the N columns corresponds Eo a deformation mode) at point s.

Let us consisely denote the triads associated with points n and s

by {-en} and {'es} respectively. Then we may express the relation-

ship linking the two sets of unit vectors as

[11-77] {L} = _sRn] {_n }"
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Figure II-2 _oo Typical Contiguous Bodies of the System
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[ii-7a]

There is a requirement for expressing the absolute velocity of a

typical s-point and the angular velocity of the typical s-triad,

in subsequent kinematic development, in terms of velocity states

of a given body. Let us think of a six long vector (column) of

velocity components (three rotational and three translational)

that are projections of _ and _ onto the s-triad axes. It is
s s

related to the {U}
n

(s)

>1 -
-::/-E' nl
v

S

Ws

vector for the body by the transformation

0 ?hiI I [_s

i l
i l

l l

l

_ _ (n)

x

Y

z
----D

u

v

w

"--ll

_2

_N
n

with [hs] and [_s ] representing matrices of displacement and ro-

tation amplitudes respectively, and with _(n)
' [_ns ] being an anti-

symmetric matrix accounting for a vector cross product, or

[xI-79]Is(n)l

"l= I- 0 I I -(Ys+nys •

ns I Zs+nzs
_ l

(Zs+nzs)I 0 ixs+nxs

Ly I D(XS+nXS) I 0s+nys I I

The superscrlpts used in Equations II-78 and II-79 are used to

indicate the frame to which the velocity components are referenced•
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Kinematic coefficients such as those of Equation 11-78 are gen-

erated for each so-called sensor point of the system of bodies.

They are used by the simulation program to produce contributions

to (G } from given force/torque components in the manner indl-
ex

cated by Equation 11-74.

J HinKe Point Kinematics

Kinematics associated with hinges follows a line of development

somewhat similar to that of sensor points. Consider the points

p and q (refer to Figure II-2) to be two structural hard points

associated with a given hinge. All necessary kinematics infor-

mation pertinent to the hinge is obtained through expressing the

velocity of point q relative to point p and in expressing the

relative angular velocity between the q and p frames. It is conven-

ient that the angular velocity components are projections onto

skew axes (Euler angle rates) and that translational velocity com-

ponents are projections onto the axes of the p triad. Let us as-

semble the six relative velocity components into a column matrix

as

with {e}k being the three relative Euler angle rates and {A}k being

the three relative translational velocity components all pertain-

ing to the k th hinge. Now the column of relative velocities may

be expressed as

[II-31] {8}k " [bp]k {U}m + [bq]k {U}n

with
!

and

nq ]

I R I-- --ten]
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In Equations 11-82 and 11-83 the rotation transfor_tions [p_]

and [qRn] are developed to _clude the effects of structural de-

for_tlon in the sense indicated in Eq_tion 11-75; the rotation

transformations [_]-I and [pRq] are developed in standard fashion

using the three Euler rotations {e}_.

NOTE:

Hinge labels are circled;

body labels are not circled.

I

Figure II-3 Topology of a Typical System

For purposes of further discussion, consider the system of bodies

of Figure 11-3. Topology of the system is simply indicated by an

integer array we call ITOPOL, which is as follows:

i 2 3 4 5 6 7 8 -_----Hinge number

[ITOPOL] = i 2 4 3 5 6 7 7 _---Body (n) relative to

I

0 3 2 6 3 1 5 2 _---Body (m)

The [ITOPOL] array, which is actual input to the simulation pro-

gram, is used to define system topology as indicated. Now, with

reference to the example shown in Figure 11-3 and the correspond-

ing (ITOPOL) array, let us indicate the form of the velocity

transformation. We may write
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V ¸

[IT-S4]

Body
Hinge

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(3)

(1) (2) (3) (4) (5) (6) (7)

, l I i l
bq I I I ; I

1'11 I I I I

I b [ bp2 I I

I q2,21 ,3 ! I
I.

I'b i i b I
1 P321 q

' I I 3,41

I I bq I I
I

I---I--"_I --I
I Ib I

I Ps,31

1

I
I

! I

l I
I i

I i
I b I

P
4 6,II

m ,

b I I
I q5 5

I -_ - I 'I. i
b ] I
P6 1 I I I I ! bq6

' I I I l I '61

I I I b I I b

P7 q7I I I I Sl I ,7

Ib I I I I I b

[ P8,2 I I I I I q8,7

where [bpi ] and [bq ] are matrices as defined in Equations,j i,j

11-81 and 11-83 (with i=Hinge number and J=Body number). The ve-

locity transformations of Equation 11-84 represent the "bank" of

all hinge kinematics coefficients previously mentioned, and pro-

duces every possible velocity component pertinent to hinges• Re-

ferring to the basic system equations 11-3 and 11-5, we note that

selected lines, or equations, from the bank (11-84) are taken to

represent constraint equations or position coordinate rate equa-

tions. The [B]j and [b]j coefficients of Equations 11-3 and 11-5

are simply subpartitions extracted from Equation 11-84.

w
. w

{U}l = {B}I

{U}2 {_}2

{u}3 {S}3

{u}4 {S},+

{u}s {_}5

(u}6 {S}B

{u}7 {S}7
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To implement calculation of Lagrange's multipliers (refer to

Equation 11-6) it is necessary to develop time derivatives of [b]j

coefficients. In a manner similar to above, where all [b]j co-

efficients are extracted from the complete collections, the [b]j

matrices come from a collection of matrices whose members are

[b ] and [bpi, ] which are developed in Appendix C.qi,j j
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Do
DEVELOPMENT OF THE {G}j FORCE VECTOR

The equations of dynamic equilibrium for the j th body of the sys-

tems are given in an earlier section as Equations II-i. As was

noted there, the right-hand side includes a so-called {G}j vector,

which accounts for all state dependent forces except for those

of interconnection constraint. Earlier in Chapter II (Equation

11-63), the {G}j vector is presented in a somewhat more developed
form.

The purpose of this section is to provide more explicit develop-

ment of the elements contributing to [G}j. Let us account for

all contributions in the following expression (we omit the J sub-

script, understanding that we are dealing with the typical, or _tT_

body) :
F,,-I r'_'1

(G} - [Gex} - _ _} _ _pu_ {_} + [_] [m] {U}[_I-Sb]

L_l

+ ½ {_3 [m,k] {U}} - [m] {U} + {Gmw} + {Ggg }"

The first term {Gex} has already been discussed in the previous

section (See Equation II-74)_ but we note here that the ordinary

force/torque components that produce [Gex} may be thoug_of as a

miscellaneous force vector. Its presence provides the program

user latitude to include a variety of additional effects. Clearly,

it is the implement through which control forces/torques are

"fed back" to the dynamic system.

The second and third terms of Equation II-85 have been previously

introduced. There is no implicit restriction on the stiffness and

damping matrices [k] and [C], nor is there a restriction on defi-

nition of the {_} coordinates; they will likely be coordinates

associated with orthonormal vibration modes in the majority of

cases. However, they may be physical (ordlnary-discrete) displace-

ment coordinates as well. In the latter case, the [k] and [C]

matrices are generally coupled.

II-35



The last two terms of Equation 11-85 are included to account for
momentumwheel coupling and gravity effects respectively. The
treatment given to built-in momentumwheels is such that, in ad-
dition to producing a contribution to {G}, there is also a re-
quired extension to the form of the [m]j matrices. This is be-
cause momentumwheels are inertially coupled. Thus, there is

sufficient requirement for a dedicated development concerning mo-

mentum wheels. The following two sections deal exclusively with

momentum wheel and gravity effects, respectively.

The remaining terms contributing to {G} are basic inertial effects

and involve the matrices [m]) [m k], and [m]. With reference to

Equation II-39) the form of [m] is given corresponding_ to the

case where one has single valued space functions _k available to

him. Ordinarily, one does not have access to such a description

of the structure's deformation modes, due to the structural com-

plexity of typical spacecraft. The analyst should always be able

to obtain,,as data, matrices of modal amplitude ratios ("mode

shapes") and the corresponding structural mass matrix (generated

by use of finite element techniques). To accommodate data based

on the more practical definition of structural characteristics,

it is necessary to recast the inertia matrices [m] in a similar

but more general format. The generality of the development of

Section II.B is not compromised by extending the form of the in-

ertia matrix. The extended, or more general) inertia matrix is

developed in Appendix A, but here, for purposes of developing

inertial contributions to the {G} vector, let us accept the re-

sulting form; and present the kinetic energy expression as

[1186]T - [uj (Irao]+ [m1 j% + [m2]jkq {U>,

[II-87]

with the repeated index sunmmtion convention implied, and with

[mo] of the form

[mo] "_ :-S ld_

----I--=I--,m:1
- --I- -=l--

that is it. is lust like the [m] given by Equation II-39 except

it is constant, independent of deformation. The constant iner-

tia matrix [m o] , as given by Equation 11-87, is always of the

form shown regardless of the choice of "modal" columns. The form

of the matrices [ml] and [m2] is such as to accommodate the gen-

eral situation; that is, their definition includes inertial inte-

grals as defined for a continuous system, (Equations 11-30 through

11-37), or as defined by structural mass matrices that are called

"lumped" or "consistent."
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The inertia matrix associated with _j is

[II-88] [ml]j- 2bi -b_ -b5 al a2 a3 (£yz)jk_

(Symmetric)

_4 _5 e6

a7 a8 _9

0 0 0

0 0

O

2b2 -b 6

2b3

Czx)J_

LCxy)J_

0 0

0 0

0 0

0 0

0

0

0

0

0

0

0

- j

and the one associated with Sj Sk is

_11 -c12 -c13 ]
/

C22 -C23 0 0

C33 i

I

I

(Symmetric)

[II-89] [m2]Jk =

o 0

I

jk

Now, for N deformation modes associated with a given body, it is

understood that the range of the indices J and k is N, thus the

coefficients (Cll)jk, (Cl2)jk, "" (Cxy)Jk are stored as 9 (NxN)

arrays of inertial integrals while (bl)j, (b2)j, °" (b6)j and

(al)j, (_2)j, "' (_9)j are stored as a (6xN) array and a (9xN)

array respectively. Thus, from a programming standpoint, we
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note that there are 9N 2 + 15N storagelocatlons required to ac-

commodate the inertial integrals necessary to account for the

deformation dependent mass matrix. Of course, if a particular

body is rigid (N=O) then only the first (6x6) diagonal partition

of [m o] is used.

Wnen the body is flexible (N>O) then the inertia matrix is cal-

culated from deformation states (_j)and inertia integrals in the

manner indicated by Equation II-86; the redundant operations due

to symmetry and null operations are avoided in the digital code.

Having an instantaneous numerical evaluation of the inertia ma-

trix, the term [_] [m] {U} is calculated and added to [G}, con-

sistent with the expression of Equation 11-58.

It is now possible to express explicitly, the combination of the

remaining two inertial force vectors in terms of the inertial

integrals given in Equations II-88 and II-89. For purposes of

further development, let us define the combination as

[II-90] {G c) -ILUJ [re,k] {U} I - [_] {U}.

Thus, the first element of {G }, corresponding to _ is
c x

[11-91] (Go) I = I-2_x (bl) j + _y (b_)] + _z (b5)j

-u (_1)j -v (_2)j -w (aa) j

-(Cyz)Jk _k - 2_x (Cll)gj _

+_y [(C12)£j + (C12)j£] _£ + mz [(C13)£J

the second element, corresponding to m is
Y

[II-92] (Go) 2 = {_x (b_)j -2_y (b2)j + "'z (b6)j

-u (_)j - v (_5)j - w (a6)j

-(Czx)Jk _k + cox [(C12)_j + C12)j_] _£

-2m (C22)£ j Ej_, + o_ [(C2 + (C23)jj_] _£ } _jy Z 3) t,J '

the third element, corresponding to _ is
z
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[11-93] (Gc)3 -{m x (bs) j + my (b6) j - 2mz(b3)j:

-u (=7)j -v (=8)] -w (=9)j

-(Cxy)jk _k + mx [(C13)_,j+ (Cla)j_] _

+ my [(C23)£J + (C23)j£] _£ -2_z (C331Zj _£ I _j '

the fourth element, corresponding to u is

" -I (_l)J + WY (_4)J + mz (a7)Jl _J
[II-94] (Go) 4 m x

the fifth element, corresponding to v is

[11-95] (Gc) 5--{to x (a2)j + _y (_5)j + _oz (_8)jl Ej

and the sixth element, corresponding to w is

[II-96] (Gc) 6 =-1 mx (_3)j + _Oy (_6)j + _oz (_9)j I _ j •

Finally, for the element k+6, corresponding to an inertial force

acting in the Skcoordinate we have

[11-97] (Gc)k+ 6 = m2 [(C11) {_ +
(bl) k]x kj J

q. _2y [(C22) kJ _j + (b2)k]

+ m2z [(C33)kJ _j + (b3)k]

-- c0 _0
x z

y z

[(Cl2)kj + (Cl2)jk] _j + (bh.)k

[(C13)kj + (C13)jk] Sj + (b5) k

[(C23)kj + (C23)jk] _j + (b6) k

+ w [(_i) u + (_2) V + (a3) k w]x k k

+

+ my [(e4) k

+ _z [(aT)k

I mx (Cyz) kJ
[

+ _ [(Cxy) -z kj

u + (_5)k v + (_6)k w]

u + (a8)k v + (e9)k w]

- (Cyz)jk ] + my [(Czx)kj - (Czx)jk]

(Cxy)jk] I Ej •
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From examining the composition of the inertial force (Gc)k+6 we
note that the first six bracketed terms represent centrifugal

forces (distance x omega-squared) acting in the deformation co-

ordinates, while the last bracketed terms of Equation II-97 rep-

resents Coriolis forces (velocity x omega).

m. MOMENT_4 WHEEL COUPLING

x_

_ne spacecraft system undergoing analysis may have several "built-

in" momentum wheels. A momentum wheel is generally taken to

mean a cylindrical or disk-shaped mass that spins about an axis

that is fixed to a structural hard point of a given body. The

wheel can be spun up or despun by an electric motor whose rotor

is part of the rotating mass. The shaft torque that acts to ac-

celrate the wheel also acts on the body in a negative sense pro-

viding active attitude control. The shaft torque is generally

governed by a control law that "senses" attitude and rate errors

of the body. In this development a momentum wheel is assumed to

be inertially symmetric about its spin axis.

Figure II-4 Typical Body-Momentum Wheel Relationship
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To develop the inertial coupling effects of the typical momentum
wheel let us consider three unit vector bases:

CI_-98] [_nj - [i, J, kJ,

[II-99] [e J = [£, m, n],
s

[II-100]and [L] = [_', m', _'] .

The first triad is the body reference triad for body n, the second

is a sensor point triad (fixed to point s), and the third triad

is fixed in the momentum wheel. Now, one of the three unit vec-

tors of [e s] is coincident with one of the unit vectors of [ew];

that is, £, m, or n may be the spin axis depending on the prefer-

ence of the analyst. In Figure II-4 we have elected to show

n = n" as the common, or spin axis.

The absolute angular velocity of the [ew] frame can be expressed
as

where {P } is an elementary 3-1ong position vector (it is null
w

except for unity in the first, second, or third locations cor-

responding to £, m, or _ being the spin axis) and 8 is the rela-

tlve angular speed of the [ewJ frame with respect to the [esl
frame.

With the inertial characteristics assumed (axisymmetry) for the

wheel, and with the velocity expression of Equation II-i01 the

total angular momentum vector for the wheel may be written as

[ll-102]h = [ew] [Jw] {_ }%7

= [_s j [Jw] ( {_s} + {Pw } 6)

with [Jw ] diagonal with all diagonal values equal to JT except

the position corresponding to the spin axis, which is Js: JT is

the mass moment of inertia about any axis perpendicular to the

spin axis and J is the spin inertia for the wheel.
s
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_z

The torque acting on the wheel (resolved to the [_s ] frame) is

d
[II-103] _ = [esl {T} = _h

= [es] ([Jw ] {_s } + {Pw } Js

- [as] [Jw] {%} - [as]{Pw} Js _)

where we define an SK_ operator such that

[II-104]

[_e] = SK* {=s }, or

O_s3

_s2

The for(

_s3

0

-"_s i

ue acting on body n at point s, due to the wheel is -_

and it drives the body's quasi-coordlnate as

Ill-lOS]{G" } " -[bs]T([Jw][bs ] {U}n+ [Jw][gs ] {U} + {Pw} J
mw n s

-[_s ] [Jw ] {_s } - [_s ] {Pw } Js 8)

with

I I sj

and also, as can be easily shown,

A

[II-i07] [b s] {U} n = [SK*([sRn] [o s] {_}n ) ] [bs ] {U} n,

Now, the shaft torque is simply the projection of T onto the

spin axis, or

Ill-lociTs - LPwj{T}

L w] L J" Js [bs] (U}n s w s "

Equations II-105 and II-108 allow us to now express the coupled

equations for body n and several momentum wheels as

11-42



Js pT bl I j I
1 wl I sl I

pT {)2
Js2 w2

G_n _

0 .

0

I o I
I I Js2

__[bs ]T [gs ] [Jw ]
+ -- 0

o

The inertially coupled body-momentum wheel equations (for two

wheels) are shown as Equation 11-109 simply for the purpose of

indicating the form. One may notice that within the equations,

there effectively resides the original form of the dynamic equi-

librium equations for body n, namely

+ [b] T {_}
[II-ll0][m]n {O}n " {G}n n

which govern in the event that there are no momentum wheels asso-

ciated with body n. In Equation II-ll0 we have placed the caret

(^) over G to represent the rlght-hand side force vector exclud-

ing momentum wheel effects.

Now, on further study of the form of the Equations II-109, we

note that if the "locked" momentum wheel effects are already in-

cluded in the definition of [m]n (which is the standard practice

when inertially coupling systems together), then the (i, i) par-

tition of the coefficients on the left of Equation II-109 becomes

simply [m] n. Also, the second column on the right of Equation

II-i09 is absorbed in {G}n' having already been accounted for in

development of dynamic equilibrium equations.
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F

iF_̧il_FDC
i

i

Thus, it follows that in order to implement momentum wheel cou-

pling with one of the flexible bodies, it is only necessary to

extend the {U} n vector to contain momentum wheel spin values

(e), to extend the inertia (except for the [i, i] partition) as

indicated in Equation 11-109 and to add to the rlght-hand side
force vector

[II-lll]{Gmw} - -_w_bs]T(sK*(Pw }) [bs ] {U}n Js "0_ •

]
The values for shaft torque Ts that appear in {Gmw} are estab-

lished by a given control law, if the wheels are to be considered

variable speed. If a given momentum wheel is of constant speed

(used only for "gyroscopic damping") then the torque equation for

it is deleted from the form of Equation 11-109; however, its

effects are still included in the upper partition of the vector

{G } (the gyroscopic torque due to constant 6).

Clearly, the equations of dynamic equilibrium for a body, after

having been augmented to include momentum wheel coupling, are

still of the general form
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F, GRAVITY GRADIENT EFFECTS

Attitude dynamics of orbiting spacecraft can be significantly

influenced by the gravitational force that is distributed accord-

ing to the system's position and deformation state. The gravi-

tational force per unit mass varies (in a central force field)

simply because different mass particles are at different distances

from the earth's mass center. Figure 11-5 describes the geometry

associated with a typical elastic body.

Typical Deformable Body

Earth's Mas R

Center
M

Figure II-$ Geometry for Gravity Effeuts on a Typioal Body

For a central force field, the gravitational force per unit mass

is given as

- - GM ri[II-ll3]

m r2 r--_
i

which, to a first order approximation, is

= _ + 0o i - eR[11-114]

i Rc c
R

where GM is the Earth's gravitational constant,

m i is the typical mass particle,

gc is local gravitational acceleration

eR is a unit vector directed along R c

and c is the origin of the body reference system.
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The virtual work due to gravitational force can be written as

g _i
1

[II-115]

V

with mi replaced by differential mass odV.

The virtual displacement field is expressed in terms of virtual

displacements of the quasl-coordlnates as

[II-ll6] ff- 6_c + 6_-c x ('PO + -n-)+ 6"_.

In combining Equation 11-115 with Equation. 11-116, the torque

about point c, due to gravity gradient effects, is

{II-1171 " gc e-Rx g + _-- eR x _ •_R
g c

where S is the first mass moment about point c,

and J is the instantaneous inertia tensor (deformation dependent)
for the body.

The resultant force due to gravity effects is

[II-i18] (Fc)g

- -_=T+_gcI_._I
= -gcmeR _'- _----\R / _-R

C C

and the force acting in the kth deformation coordinate, _k' is

II-" - gc *-k" body+_- " (_o+_-)odV
_k g c

V V

[11-119]

C

V
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Now, the unit vector eR has projections onto the body axis system
that continually vary as the body changesattitude. Let us express
the unit vector e--R in terms of direction cosines and the three unit
vectors associated with the body reference frame as

and also define

" E.I .

V

odV,

With these definitions and the force and torque expressions of

Equations II-ll7, II-llS, and II-i19, it follows that the first

three elements of the contribution to the rlght-hand force vector,
due to gravity effects are:

[II-125]

[II-126]

the second three elements are

Lg.I

and the force, due to gravity, acting in the kth deformation mode is

G_k --go [ygJ, ik'a' - g--q¢p bl)k + (b2)k +(b3)kRc- 2 + ekj_J 3

2yg 1

+ (i- 2722)[(b2)k + (C22)kj_j]
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[II-127]

+2Y iYg3[ bb k+ cl3 kj+
1

(_o)__ • ( )where the inertia integrals (n - 1,2, "6), and C£m kJ

(£,m - 1,2,3), are consistent with the development of Chapter II,

Section D and Appendix A.

G, PROVISION FOR INCLUSION OF THERMAL ENVIRONMENTS

All problems associated with thermally-induced deflections have

in common the requirement of knowing the spacecraft's attitude

relative to the sun to determine the effect of solar heating.

This required information can be extracted, at any point in time,

from the state vector. It is then necessary to have a model of

the flexible structure's response, either static or dynamic, to

solar heating.

Considerable work has been done on modeling flexible appendages

in thermal environments* and the results indicate that the response

*For example, refer to:

i) Fixler, S. Z., "Effects of Solar Environment and Aerodynamic

Drag on Structural Booms in Space." J. Spaceo_a_%, Vol 4, No.

3, March 1967,

2) Frlsch, H. P., "Coupled Thermally-Induced Transverse Plus

Torsional Vibrations of a Thln-Walled Cylinder of Open Sections,"

NASA TR R-333, March 1970.

3) Goldman, R. L., "Influence of Thermal Distortion on the Anomalous

Behavior of a Gravity Gradient Satellite," AIAA Paper 74-922,

AIAAMechanics and Control of Flight Conference, Anaheim, Calif-

ornia, August 1974.
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depends on the radiation properties of the booms and the attitude
relative to the sun.

The simulation program accounts for time-dependent thermal de-

formations in the following manner. It is assumed that a model

exists whereby the structural deformation of a flexible boom (or

appendage) resulting from solar heating can be determined from

elements of the state vector and time. This deformation is sub-

tracted from the actual deformation; the difference is premulti-

plied by the appendage stiffness matrix. The result is a vector

of modified, generalized restoring forces for the appendage, which

is summed into the {G)j vector for the appendage body.

In terms of the development in Sections II.B and II.D where

-[k]{_} is seen to be the generalized restoring forces (in the

deformation coordinates), we note that this is replaced with

-[k]({_} - {_e}). The thermal deformation state {_e } is that

which must be established from a thermal deformation model.

In this way, a closed loop response analysis can be achieved

using external subroutines to develop the thermal deformations.

Some problems may require only open loop operation if the vari-

ations of {_e } in time is slow with respect to general dynamic

response.

Rather than building in a rigid (or irrevocable) model of thermal

deformation, the dynamic simulation program provides the user

with an interface whereby he can formulate and code a particular

model, thus latitude with respect to user requirements is retained.
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III. SYNTHESIS AND ANALYSIS OF THE LINEARIZED SYSTEM

!

|

|

Developments to this point have described the analytical tech-

niques used to synthesize the nonlinear characteristics of a

dynamical system consisting of an assembly of interconnected

flexible (or rigid) bodies. Particular emphasis has been placed

on spacecraft systems where individual bodies that comprise the

system may be spinning or nonspinning and may have large excur-

sions with respect to each other.

In this chapter we present a comprehensive summary of the tech-

niques developed for synthesis and analysis of the linearized

dynamic system with particular emphasis on frequency domain tech-

niques. For the purposes of this discussion it has been found

to be convenient to redefine the nature of the system under con-

sideration and to describe the techniques not in the sense of a

spacecraft system consisting of interconnected bodies that may

be subjected to a control system but rather to consider the total

dynamic system as a _lant subject to a controller.

Linearization of the nonlinear state equations is necessary to

permit application of the powerful analytical techniques asso-

ciated with linear system stability synthesis. Whenever a non-

linear system can be reduced to a linear system in the vicinity

of a particular state of interest, it is much more desirable to

work with the linearized state equations. An additional feature

related to the linearized system permits the analyst to observe

linearized perturbation time response characteristics for the

system. The linearized time response can be quite easily auto-

mated by recursive formula, which are generally more efficient

than nonlinear numerical integration algorithms.

!

i
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Ao
INTRODUCTORY DIS CUSS ION

The mainline nonlinear time domain analysis is structured to as-

semble a collection of interconnected bodies, including a control

law. The general form of the governing equations may be concisely

indicated as

[III-i] _i = F(yi,t) i = i, 2,

and the form of the function F is the essence of the nonlinear

time domain solution. In fact, it can be stated that Equation

III-i is the fundamental basis for the entire DISCOS program. Al-

gorithms for evaluating the nonlinear state vector time deriva-

tives (and auxiliary equations) are centered in a subprogram and

its supporting routines. These same functional algorithms are

used for linearizing the governing equations about a specified

state. In addition, it has been found desirable to introduce

some new variables including sensor signals, Xss, and control

torques, B. These new variables extend the number of equations

and these additional expressions are linearized along with the

basic state equations. Additional remarks concerning the use and

manipulation of the additional variables is deferred for a later

section. The remainder of this subsection will address specifics

relating to the linearization process.

We first focus our attention on a single variable, Yk' and its

dependence on the system state, yi, through a known (though pos-

sibly nonlinear) functional relationship. Arguments begin by

considering an initial system state, yi(o), and a functional al-

d Yk" Wegorithm with which to evaluate the expression, Yk = d-_

first express the unknown, Yk' in terms of a Taylor's series ex-

pansion about the given state, yi(o) as

_Yk' _2yk

[III-2] Yk = Yk (°) + --3yJ HYj + _yJ_y_ dYJdY£ + " " "

As our interest lies in the linear part only, the series is trun-

cated for all partial derivatives greater than one and we have

[111-3] Yk -Yk (°) . ___Yk dyJ = Yk,j dYj"
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The task at h.andthen is to establish the partial derivatives
indicated as Yk,J' thus yielding an expression of the form (for

A_i yi - yi(o), i = i, 2, - • "Iall
!

[111-4] _i . Hi,j Ayj

Because it would be a nearly impossible (certainly impractical)

task to generalize determination of the partial derivatives as

explicit analytical expressions involving the independent state

variables, we have adopted a numerical approach. This task is

accomplished by employing numerical perturbation techniques in

conjunction with quadratic functions to establish the desired

partial derivatives. Symbolically, we seek to determine the

elements of Hi, j such that

[111-5] _i . _i(o) + Hi,j _yj

where it is assumed that

i) The functions, _i, are indeed linear sufficiently near the

state, yi(o)

2) The functions, _i, (although possibly nonlinear) can be rep-

resented as a quadratic (or lower order) in the neighborhood

of yi(o).

The basic approach is concisely sun=narized in two steps:

i) Establish quadratic coefficients for _i in the vicinity of

the state, yi(o)

2) at the state, yi(o),
Evaluate the partial derivatives Hi, j

using the quadratic coefficients and perturbation values on

the independent variables.

B, THE LINEARIZATION PROCESS

With reference to Figure III-i, the quadratic formula can be stated
in matrix form as

ill6f Ill
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C....

_-(q)

f(i+2)-- --

f(i+l)----

f(i)

-+

/ I
P(i+l i

!

1
I

Ii I
q(i) q(i+l)

P(i+2)

q(i+2)

q

Figure III-1 The Quadratia Formula

where q is a local spacial coordinate with origin corresponding
3f

to qfi3 and it is desired to establish the derivative, _q, eval-

uated at q(i).

In general, the required partial derivative is

_f _f _n

[111-7]7q = _-7_"

The three values, f(i)' f(i+l)' f(i+2)' are evaluated via the

previously discussed functional algorithm, thus these values do

in fact satisfy Equation 111-6. More specifically, consider

[111-8] fi+l = In2i+ .]

[fi+2) Ln 2i+2

qi+ i

hi+2

and by matrix manipulation it follows that

rl2i

[III-9] f(n) = tn2 n lJ In2i+l

n2i+

n i

_]i+l

qi+2

i fi

fi+l

where the local coordinate, n, is defined to be
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[_

[III-lO] n =
q - qi

qi+2 - qi

and it can be noted that

___E= 1

[III-ii] n i - O; ni+ 2 = i; _q qi+2 - qi

It then follows that

[III-i2]

0 0 fi

f(n)- n lJ 2i+I ni fi+l

i fi+2

and if we specify Di+ 1 = 1/2 and note that f

we have

[IIl-13]

[III-14]

[Ill-15]

f(n) = ,b 2 n lJ " 4 - f(1/2 '

0 f(1)

0 f(I) )

and, in particular,

[111-16] T_ (o) : f'n (n--O) : e,

and

[111-17] _q (0) = f'q (q:qi) :
q(i+2) - q(i)

= f
(i) (n:i)
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I. Comments

Selection of an initial perturbation value, q(i+2), from an ini-

tial specified state, q(o) = Yk(O), is somewhat arbitrary. A

value of 1% of the initial value has been successfully used for

all example problems during the course of the study. In the case

where the initial value is null, an infinitesimal value must be

chosen. A value of ixl0 -5 has been accommodated in the digital

code. The intermediate choice of n(i+l) = 1/2 was selected for

other reasons. Consider first that a single evaluation of a

_f

partial derivative---_ is not sufficient to qualify its validity.
_y

We have employed an approach whereby two successive evaluations

of _f/_yi obtained by successively cutting the perturbation in

half must agree to a predetermined number of significant digits

(e.g., 5). The choice of n(i+l) -- 1/2 requires but a single new

evaluation for each element in _i at each successive reduction

in the perturbation value. In summary, the linearization em-

ploys an iterative technique to establish the desired partial

de rivat ives.

. System Resonance Properties

The linearization process has provided a system of first order

differential equations that describe the dynamical simulation

in terms of perturbation variables about an equilibrium state.

The linearized canonical form appears as

• jayJ[III-18] _m . Hi , (i, J = i, 2, • • -)

The coefficients Hi, j contain all of the resonance frequency

properties of the dynamical system. The standard eigensolu-

tion form is indicated by taking the transform of this expres-

sion

El11-1 I( js j o o.

Extraction of the roots (eigenvalues) from Hi,jthen gives the

roots of the dynamical system. There will be N of these roots

and any complex roots will appear as conjugate pairs because the

elements of Hi, j are all real. The imaginary part of the complex

pairs represents the resonance (or characteristic) frequencies

of the system.
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Cm EXCHANGE OF VARIABLES

[III-20]

[II1-21 ]

[III-22]

[III-23]

[III-24]

It is often necessary for the analyst to require additional

variables with which to assess the stability characteristics

of the dynamical system, These additional variables ordinar-

ily take the form of plant sensor signals and control system

output forces and torques. Although the desired variables

may not be explicitly contained in the system state vector,

yi, they are known in terms of the state variables through an

expression of the form

Recall also from previous discussions that either directly or

through linearization we have established

A_ i = Hi, j AYJ

Now rewriting Equation 111-20 in matrix form and identifying

variables to retain, YI, and variables to eliminate, Y2, gives

and it can readily be established that

IY}- [R] IZ}

where

[- {I°-]

and

Thus, the state equations for the dynamical system can be

written (in terms of variables that include the desired plant

sensor signals and control system forces and torques) as

111-7



[iii-25]

= R"I R, is commonly referred
and the transformation Aij Hi, j

to as a similarity transformation. The matrix Aij is said to

be the transform of Hi, j by the matrix R.*

The similarity transformation Aij possesses a unique property

in that the eigenvalues of Aij are equal to the elgenvalues

of Hi,j! A simple proof establishes this point.

Proof:

The characteristic matrix of Aij is given by

It follows that Q(s), the characteristic polynomial of Aij, is

det(R) it is apparent that

Q(s) u det (Hi, j -sl) = P(s)

where P(s) is the characteristic polynomial of Hi, j. Thus it

is evident that the matrices Hi, j and Aij have the same char-
acteristic equations

Q(s) - P(s) = 0

and therefore, the eigenvalues of Aij are equal to the eigen-

values of Hi, j.

Application of this property now permits isolation of the plant

and controller, even for a state space representation of an in-

herently nonlinear system that can be linearized about a spec-

ified state. Separation of plant and control system variables

is an important facet of linear system stability synthesis.

*S. Hovanessian and L. A. Pipes: Digital Computer Methods in

Engineering, McGraw-Hill Book Company, New York, 1969.
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[III-26]

Evaluation of the Similarity Transformation

This discussion relates to a procedural approach for determi-

nation of the similarity transformation matrix, JR], that will

relieve the user from the burden of having to select those

variables to eliminate from the original state vector such that

the auxiliary variables, B i and X i can becom 9 an independent
ss

constituent of the modified state vector for use in the lln-

earlzed studies. With reference to Equation III-22, all of

the Cij coefficients are known as they have been obtained

through linearization of the auxiliary equations. The Cij co-

efficients simply define the dependence of the auxiliary vari-

ables, --_, on the original state variables, yi. In general,

it is not possible to directly partition the Cij in the C I and

C 2 partitions as indicated in Equation III-22, for we have yet

not made the decision as to which state variables to retain

and which ones to discard in preference to introduction of the

auxiliary variables, _. In this light we would llke to make

a best possible choice with regard to which of the variables

to eliminate from the state vector yi, , such that the auxili-

ary variables, w j, may be included. Many times there will be

a one to one variable exchange between an element of w j and an

element of yi. In any case a variable exchange is necessary

to structure the total system into the desired plant/controller

framework whereby the plant and controller can be isolated

along with the plant sensor signals and the control system in-

puts.

The following approach is employed in this simulation to ac-

complish the desired result; namely, an optimum selection

from yi as to which variables to eliminate such that w j can be

introduced as a part of the state vector. With reference to

Equation 111-22 we can write

Our primary focus of attention is now directed to a systematic

examination of the Ci_ coefficients such that the variable ex-

change is accomplished in an optimum manner. We will first

make note of some size identifications to help clarify the

discussion.
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[III-27]

,

Cij has size NR by NS

yi has size NS by i

has size NR by i

and

NJQ = NS + NR.

Clearly, there exists at least one nonzero element in each row

of the Cij array. Otherwise yi does not represent an indepen-

dent set.

Now a search through the first NS elements of row 1 in the

matrix array

will identify the largest element (absolute value) in row i.

Assuming that this element occurs in column JBIG (I < JBIG < NS)

allows us to divide each element of row i by this largest --

element and subsequent elementary row operations on rows 1

through NR will eliminate those elements below the pivotal

element in column JBIG.

This procedure is repeated for each of the NR rows contained

in the matrix and the following observations are noted;

i) the appearance of a one (i.0) in a row identifies a vari-

able that will be eliminated in preference to inclusion

of an element of w j.

2) The absence of a zero or one in columns of a given row

indicates which variables will survive the exchange process.

3) All variables in J (NR of them) will become part of a new

and independent state vector (the modified state vector).

4) The transformation, Rij (i,J = 1 . . . NS) can be con-

structed from the matrix that remains after the procedural

approach has exhausted all of the NR rows of the expression

III-27.

Illustrative Example

A simple example is presented to further describe the actual

mechanics used for evaluation of the similarity transformation.

Linearlzation of the auxiliary equations has established

llI-10



IYIIw, = [C] Y3
w2

Y4

and to implement the proposed algorithm, we first write down

the C matrix augmented with -I and further identify the elements

of C as

For illustrative purposes assume that Ibl31 > I(bll, b12, b14)l
and hence b13 is the pivotal element for the first row. It

follows then that row 2 is modified by the relation

ele2j -523 * += blj b2j

blS

giving the matrix

m

b 11413 bl_bl3

_b23 hi2
bl3

+b21 +b 22
m

.It1Ic12iic1421 C22 0 c2h

!

i I b l_b 13

!

b__
-b23 bl 3

0 I +b2_

c25 --

1
-- -- 0

b13

b2____3 -i

bls

We continue the process by first dividing row 2 by the largest

element and again using row operations to eliminate the other

element in that column. Again, for illustrative purposes, we

will assume we know the pivotal element of row 2 (say c22) and

row 1 will be modified as follows by row operations

elelj -el 2 * q"= e%j clj
C22

giving

= l+Cl 1 c22 0

dij I c21 i

LC22 .

= Idll 1 0 i
_21 i 0

I -CI2

+ci 4 C22
I

c2_ c25

) i --e22 c22

I d263

-c12 c25

+Cl 5 _-22
I c12 ]

-
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from which we establish the desired similarity transformation as

= -d21 -d2_ -d2s -d_ •

Rij 11 -d:_ -dls - ,

Now it follows that the original state variables are written in

terms of the modified state variables as

1Y2 = d21

0

-d_

-d1_

1

0

-d2 s

-dls

0
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E

D, SYSTEM TRANSFER FUNCTIONS

The entire system transfer function synthesis can be concisely

su_narized in a chronological sequence of steps that began with

linearization of the coupled mechanical/control l_w equations

that govern the dynamical motion. This process included linear-

izatlon of additional equations that contained specific variables

required for further consideration in the'stability analysis;

namely, plant sensor signals and control system outputs. A

similarity transformation has been introduced which in effect,

exchanges original state variables for these desired sensor sig-

nals and controller outputssuch that the resulting modified

state vector still is representative of an independent set of

state variables. The resulting system of state space equations

is later identified as Equation III-28.

,.

The system characteristic matrix, Aij, provides the basis for

evaluating the coupled mechanical/control system resonant char-

acteristics (natural frequencies) as well as-providing the fun-

damental basis for specification and determination of the various

types of transfer functlons_ Thenext subsection addresses some

of the more specific details regardlng-speclflc transfer function

relationships. A particular transfer function is identified by

a type along with the desired Output/input variable designa-

tion. An elgenvalue problem is then stated, which leads to

determination of the numerator roots (zeros) and denominator

roots (poles) for the particular transfer function. Once the

poles and zeros are known for a transfer function, this infor-

mation can be further processed and displayed by any of the

conventional display modes: Bode, Nichols, Nyquist, and/or

root locus.
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The conventional block diagram representation for the coupled
plant/controller system (Figure III-2) provides additional in-
sight for determination of system transfer functions,

- _ Plant

IBI

_o_o_o__c_l_ {_}

Figure III-2 Plant/Controller Block Diagr_

The first-order differential equations for the system are written

as

Zj + RTJ + B R j
[111-28] _i = Ai j BTij sij s

and it is helpful at this point to express the equation in ma-

trix form and indicate the separate partitioned subsets of _i

Z j _J B and R j as
Aij, , BTi j, ' sij s

a21 a22

a31 a32

a23

a33

a24

a34

Lb_q
The following observations are noted;

b s q

+ •
I_,I

a31 = 0 bTl = -a14 bsl = 0

a41 = 0 bT2 = -a24 bs2 = 0

a13 = 0 bT3 - 0 bs3 = a32

a23 - 0 bT4 - 0 bs4 TM a42

III-14



and Equation 111-29 can be restated as

a21 a22 a24

a32 a33 a34 ll
La._J

Equations 111-30 are the operating basis for stating particular

transfer function relationships for the plant�controller system.

The general procedure is to establish a system transfer function

and outputs X and B. Loops may be
between inputs _ and R s ss

opened to provide open loop information by manipulation of the

Aij coefficients to prohibit certain feedbacks.

To symbolically describe specification of a transfer function

we begin by consolidating the b coefficients and taking the La-

place transform of Equation III-30 to give

1- +
or

[ _II--32] [ _ _ l [A] ] {Z (S)} " [_] {U (S)}

P
and then employ Cramerts Rule to evaluate a given element Z(s )

q where
due to a particular input U(s )

[III-331 Z(slP/U(s) q = augl Is -AI

[Zs-Al

and where aug [Is - A[ is accomplished by placing column q of b

into column p oflls - AI.

The Q-R algorithm is a useful tool with which to extract the

indicated determinants in Equation III-33.

J. G. F. Francis, "The QR-Transformatlon - A Unitary Analogue

to the LR-Transformatlon." 1'h_ Compute_ Jou2nal, Volume 4, Octo-

ber 1961 (Part i) and Volume 5, January 1962 _Part 2).
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ii The Root Extraction Process

With reference to Equation III-33 it is desired to evaluate both

the numerato_ and denominator roots. The denominator root extrac-

tion is straightforward in that we wish to find Pl, P2, P3P "'" Pn

from an expression of the form

D(S) = det([l]s - [A])

such that
n

[111-34] D(s) = (s - Pl) (s - P2) "'" (s - pn ) = /7 (s - pi ).
i=l

This evaluation is completed by extracting the characteristic

roots of the matrix Aij. In general these roots will be complex

because Aij is not symmetric.

The process employed for evaluating the numerator is best illus-

trated with an example. Consider that we have the (4x4) charac-

teristic system matrix,

[Aij ] =

a21

a31

a22 a23

a32 a33

Ia24

a34

[III-35]

and the column of coefficients b i which premultiply the desired

input variable U q. Further_ let it be desired to obtain the

transfer function relating output of the third variable in the

state equations Y3 to the input Uq.

The state equations for this system would appear as

a21 a22

a31 a32

a23 a24

a33 a34 {Yl{blY2 + b2

Y3 53

y b

Uq

and, with reference to Equation 111-33, the numerator is

N(s) = auglls- AI or

III-16



j: ±-_ -:

[III-36] N(s) _, det

s -a I 1

-a21

-a31

-a41

-a12 -a14

s -a22 b 2 -a24

-a32 b 3 -a34

-a42 J s -a44

After performing elementary row operations, Equation 111-36 can

be restated in the form

S -all + a31 bl/b3 I-a_, + a32 bl/b3 I-a_ -_ a_4 bl/b 3

[111-37] N(s) - bade t -a21 +a31 b21b3 [s-a:_R+as:_b2/b3 1-a24 +a34 b21b3
l l

-a41 +a31 b4/b3 I-a42 +a32 b4/b3 [ s-a44+a3_b4/b3
! !

or, in symbolic terms as

[III-38] N(s) = b 3 detl[Is] - [?_]I

where the matrix _ is given as

!II -a31 bl/b3 a12 -a32 bl/b3
21 -a31 b2/b3 a22 -a32 b2/b3

41 -a31 b4/b3 a42 -a32 b4/b3

a14 -a34 bl/b3

I •

a24 -a3_ b2/b 3

a44 -a34 b4/b3

Note that the previous expression for N(s) is finite only if b 3 _ 0

and the question is--can b 3 realistically be null? The answer is

yes as the following example indicates•

Examp le

Consider the simple mechanical system consisting of two masses

connected by a single spring/dashpot combination as shown in the

sketch.

xl k

ml

C
JI/JIlIJ#l IIIll tl I I

-_X 2

i I-_F2
IIIIII II IIII II fl I I

The state space representation is
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_7;__,.

E_
-[o,_2

c/mz

-c/m 2

-k/ml

k/m2 -k/m X 2 +/0 l/m2 I {_121ltx'lt: :J
X2

and the frequency domain (or transformed) equations in s are

/x,<,_/_x:<,,jL _]
where

[A] =
-clm I clml -klml klml ]

c/m 2 -c/m2 k/m2 -k/m2 1 .

_ o o Oo]1 0

Consider now the transfer function X1 (s)/Fl where the augmented

numerator is

N(s) " det l/m i -c/ml klml -k/ml

0 S + c/m2 -k/m2 k/ml

0 0 s 0

0 -i 0 s

and the pivot element is the (i, i) element or I/ml _0. On the

other hand, the transfer function XI(S)/FI has the augmented

s + c/m I -c/ml 1/ml -k/ml

-c/m 2 s + c/m2 0 k/m2

-i 0 0 0

0 -I 0 s

and the pivot element is the (3, 3) element, which is null.
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The problem we nowaddress involves evaluation of the numerator

determinant N(s) when the pivotal element is null. The particu-

lar mathematical problem may be restated as

where

element.

-bitrary constant not equal to one of the rLoJots\of yields

and if we define (s - X) - l/p, there results

P

The roots, ,[Pi' i=l,N), are found as the eigenvalues of the ex-
pression

and the elgensolutlon permits N (s) to be written as

We now make the following observation: a Pi equal to zero im-

plies a root at infinity (or a characteristic polynomlnal having

order less than N). Thus, the null Pi'S are eliminated from the

expression giving the characteristic polyminal an order n, which

is less than N. It is a rather common occurence for the number

of zeros (order of N(s) ) to be significantly less than the num-

ber of poles (order of D(s) ). With reference to Equation III-

43, the numerator expression, N(s) can be written as
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[III-44] N(s)= (-I)N detl_- IXI {(i - P

1
and, recalling that p = --, yields

s- X

I
(x - si)

i=l

Pl ) (1 _ --P2) ... (i - P#_IP

(S - S2) "'" (S- Sn) l '

Next, we note that

n

and it follows that

° I I[ni-471 N(s)= (-1)N-n /'/ Pi det A- IX 17 (s - si).
i=l i=l

The numerator root gain, kR, can now be identified as
n

[III-48] kR- (-l)N-n i_=l Pi det[ _- _X I

and the Bode gain, kB, for the numerator is
m

kB = _ (-1)m_ s where m_Z- n.
i=1 i

2e Transfer Function Classification

With reference to Figure III-2 it is possible to directly iden-
tify six transfer function types. Each type is characterized by

the specific variables involved and by the presence of feedback.

Additionally, a s_venth type will also be described whereby cer-
tain of the control variables feed back and others do not. This

type is similar to an open loop transfer function but treats se-

lected channels of the controller as part of the mechanical sys-

tem (plant). During the course of this discussion it will be-

come apparent that additional transfer function types are easily

accommodated by rather simple manipultaions with the system char-

acteristic matrix, Aij.
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In general it should be noted that the process of obtaining the

desired transfer function involves but a few basic steps. The

transfer function characteristic matrix, _ij' and the desired

force coefficlent vector, 5 i are obtained directly from the sys-

tem characteristic matrix Aij° These two matrices are then put

in a form such that the Q-R algorithm can be employed to extract

system roots.

Type I (Plant Only)

Type I is the forward path transfer function for the plant with

no feedback and is of the form

P q = G(s)[III-49] Xss/R T

The control variables 5i and control outputs, B i, do not feed

back into the plant. The matrix expression depicting the system

of interest is

The matrix, Aij , to use in the general expression given as Equa-

tion III-33 is referred to as _iJ or the reduced Aij matrix,

La21 a22j

The augmented_i j matrix is obtained by removing the column cor-

responding tO the input variable, R_, from the expression b T and

inserting this column into the column in _lj' which corresponds

P The resulting transfer function is
to the desired output, Xss.

then given as

[III-52] X P/R_q = aug .l is - IRI •
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Type_ II (Controller Only)

Type II represents the feedback path, H(s), for the controller

only. The desired transfer function relates control system out-

puts B i to sensor signal inputs, X_s_

[111-531 BPlXs_ " H(s).

The reduced characteristic matrix _ij and the corresponding in-

put coefficientsp bik, are given as

a, 1 I[111-54] a_3 a44J La_2J

Type III (Open Loop, GH)

Type III falls within the framework of the classical open-loop

transfer function designation and relates control system out-

puts B i tO external plant inputs _. The algebraic expression for

a given output variable, Bp due to an external input, R_, is in-

dicated as

[i11-55]BP/RqT - (Gn)(s>"

The open-loop system characteristic matrix Ri j and corresponding

input coefflciencts, blk, are

_ij = , bik = F-al_l •

Previously it was noted that a31 = a#l = a13 = a23 = 0 and, in ad-

dition, the partitions a14 and a24 are set to zero to prohibit

the Bi feedback. Thus, the loop is opened to establish GH, the

open-loop transfer function in s. Note that the negative sign

in the bik coefficients simply indicates that the B i feedback is

negative with respect to the external plant inputs, _.
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Type IV (Open Loop, HG)

An additional open-loop transfer function is often desired to

assess the plant sensor signal outputs due to controller noise in-

puts. The transfer function then relates sensor signal outputs,

X i to control system noise inputs, R j The plant sensor slg-
SS* S "

hal vector does not feed back into the system so that we have

[111-57] P q (HG)Xss/Rs = (s)

[III-58]

and the system characteristic matrix,
ij'

put coefficients, bik , are identified as

a21 a22 blkI]a2 h 00

a33 a34 a32

La 23

and the external in-

Note that the a32 and a_2 partitions have been nulled to elimi-

nate sensor signal feedback.

Type V (Closed Loop.- Control Ratio)

The system control ratio is given as the transfer function that

relates plant variable outputs to externally applied plant inputs

with the control system entirely active. We express this transfer

function as

SS i"

(s)

and the system characteristic matrix _lJ and the external input

coefficients bik are identified as

[III-60] ijblk[al41a21 a22 a24 -a24 1

a32 a33 a34 _ J

The negative sign in the matrix bik indicates that the feedback is
negative.
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Type Vl (Closed Loop)

An additional closed-loop transfer function has been accommodated

within the digital simulation. Specifically, Type VI relates

plant sensor signal outputs to sensor signal noise inputs with

all control system loops active. The transfer function is sym-

bolically indicated as:

[III-61] X p = (transfer function) R q
SS S

where the system characteristic matrix, _ij' and corresponding

input coefficients are identified as

lj= lla12allblk=I1
[III-62] Ia21 a22 a24J

a32 a33 a34| a3

a42 a43 a44J La42J

Type VII Cquasi-Open Loop)

An additional transfer function type is identified here and re-

ferred to as quasi-open loop. It is of the open loop type in

that we are interested in control system outputs, B i, due to plant

variable inputs, RJT. For example, suppose that for a multl-channel

control system (such as azimuth and elevatlon), we desire outputs

B i on the controller channel that do not feed back and that the

other channel is active in that it feeds back into the plant.

_ _ | _

For the configuration indicated, a typical Type Vll transfer func-

tion (TF) would be given by

Bp - (t=ansferf nction>
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i=¸ = _±

[III-63]

and the form of the system characteristic _trix, _iJ' and plant

input coefficient _trix bik would be

-]_iJ " ' bik = -al4 "

a21 a22 a24 -a241

a32 a33 a34 0 I

.0j

The subpartitions al# and a24 indicate modification of t_ origi-

nal partitions al% and a24. Specifically, amn is a subset of aij

obtained by keeping only those n columns of a that correspond
inn

to the Bi variables that feed back to the plant.

o Transfer Functions - Po!ynominal Description

This subsection is addressed to implementation of control system

transfer functions described as the ratio of two polynominals in

the frequency domain, s. Specifically, we consider

[III-64] TF " P(s)/Q(s)

where

Q(s) - a0 + als + a2 s2 + a3 s3 + ... + an sn

and

P(s) ,, b 0 + bls + b2s 2 + ... + bmsin.

Because the previously described governing equations have been

stated in co_onical first-order form, we propose to restate the

polynominal description for the transfer function in the form

[III-65] _i 6J
= Aij + BiU

The block diagram for the system is

6

[III-66] from which we write
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and expansion of the implied operator in s results in a differ-

ential equation of the form

n n-l m m-i
[111-67] a g + g + "'" + al 6 + a0g = b U + b U

n an-i m m-i

where _ -- dng .

dt n

+ "'" + bl _ + b0U

In general, the order of P (s) will be no greater than the order of

Q(s) orm <n.

a. m=n

We divide Equation 111-67 by a
n

n n-i

[III-63] _ + Cn_ 1 g + "'" + C I _ + C0_ = dm

a i b i

where C i - --and d i 1-a a
n n

An example will be used for illustration.

to obtain

m

U + din_1

m-I
U + ... + dlU + d0U

Em.o2npZe: Consider the equation with m=n=4,

e..! imo eo • • * i •

6 + C 3 6 + C 2 6 + CI_ + C06 - d4 "U" + d3"U + d2U + dlU + doU

or, in operator form

s4_ + s 3 C3g + s 2 C2g + ClS_ + COg - s4d4U + s3d3 U + s2d2 U + s dl U + doU.

This can be rewritten as

s4(6- d4U ) + s3(C3 g- d3U ) + s2(C26- d2U ) + s(Cl6 - dlU)+ (Cog- d0U) = 0

and the substitution

61 = 6 - d4U

permits a reduction in order to

we can again introduce a new variable

. ÷ _
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and rewrite the previous as

It follows that if we define

a

63 - 62 + C26 - d2U

there results

s(_3 + C16 - dlU ) + C06 - d0U = 0,

and the substitution

64 - _3 + C16 - diU

0.

gives

_4 = -C06 + doU.

The variable 6 can now be eliminated from each of the above ex-

pressions and the results generalized to n th order systems.

The result is concisely stated as a matrix equation that is recog-

nized to be of the desired form initially given as Equation III-65,

1112

11

[ziI-69]

- I 6n_11

VoJ

-On_ 1

-On. 2

-C 1

-Co

1

0

0

0

•

1 •

0

0 '

• OI

• OI

• I

• I

11

• Ol

t

P

dn_ I - Cn_idn

dn_ 2 - Cn_2d n

+

d I - C1d n

d o - Cod n

U

where 6 1 and 8, the original variable of the equation, are rela-
ted as shown previously and U is the input variable to the trans-

fer function expression as indicated in Equation III-65.

b. m<n

The general expression for the case where m <n is easily accomo-

dated by restricting the di coefficients to reflect the limit m.

Commonly, only the d o coefficient will be finite.
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[III-70]

Frequencx Response

Transfer function poles_ zeros, and root gain can be converted to

the standard Bode form for frequency response by combining time

constants, damping, and resonant frequencies as

r _
s i=l (i + __+

TF -

. (i÷ 1 +
j"l "3 "

2

where the Bode gain is

k B - k

n

/'/z l
i=l

m

/7pj
j=l

where k - root gain and

T = system constants

= system damping at frequency

= system resonant frequency.

The frequency response is then calculated by substltutlng Jm for

s and evaluating the transfer function expression at various _Is.

The digital simulation uses a vernier frequency incrementing ap-

proach that automatically introduces smaller frequency increments

near the poles and zeros. This variable frequency incrementing

technique permits better transfer function resolution near the

resonances where amplitude and phase can vary rapidly.

. Root Locus

The root locus method of analysis and design is based on the re-

lationship between the poles and zeros of the closed loop transfer

function and those of the open loop transfer function. The method

is used to determine the location of the roots of the character-

istic equation as a function of a single open loop gain param-

eter. The locations of these roots are indicative of the relative

system stability, The analyst may use the method as a design tool

by adjusting the poles and zeros and the open-loop gain parameters

in such a way as to yield a closed loop system with satisfactory

critical frequencies (poles and zeros),
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To further describe the theoretical basis for the methodwe re-
fer to the conventional control ratio for a feedback system as

shown in Figure 111-3.

R(s)

l

G(s)

Figure III-3 Conventional Feedback Control System

The control ratio C(s)/R(s) is

[m-711_ . G(s)

R(s) 1 + G(s)_(s)

and the open loop transfer function G(s) H(s) is identified as
a ratio of two functions in s,

[111-72] G(s) H(s) - k P--/! •

Q(s)

The characteristic system equation is

[m-73] 1 + G(s)H(s): 0
or

l+kP--_= O.

Q(s)

The conventional root locus plot portrays the loci of the values

of s that satisfy the characteristic equation as k varies from

zero to infinity and we note

i) at k=0, the roots of the characteristic equation are equal to

the roots of Q{s), which are the same as the poles of the open

loop transfer _unction, k P_a)|

Q(s)
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2) as k approaches infinity, the roots approach the roots of P(s),

the open loop zeros.

Thus, as k varies from 0 to infinity, the locl of the closed loop

poles migrate from the open loop poles to the open loop zeros

and the direction of migration depends on the sign of the open

loop gain parameter, k.

Rewritting Equation 111-73 yields a more conventional expression

for the characteristic equation as

[ln-74]k_ = -i
q{s)

and two conditions are required;

Q(s)l

2>/P(s)Iq(s) = laO°, k>_0 .
J

The first of these conditi_ons can be expressed as

for those values of s that satisfy the angle criterion. The con-

ditions that govern the migration of the roots in the complex

plane can be solved by an iterative procedure. The iteratlve

procedure for evaluation of a single root locus* is described in

Appendix E.

E, LINEAR TIME DOMAIN RESPONSE

The linearized canonical first-order system of equations can also

provide a basis for studying system time history in terms of per-

turbations about a specified state when the system indeed behaves

Welch, Raymond V. National Aeronautics and Space Administration

Goddard Space Flight Center, Branch Report No. 254, October 2,

1973.
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in a linear manner in the vicinity of the state. The nonhomogen-

eous form of the equations was the basis for determination of

system transfer functions and appeared previously as

[111-75] _i = Ai j ZJ + bi k uk(t).

The externai system inputs are the elements of Uk. It is con-

venlent to establish the solution for the above system through

use of a recursive formula numerical integration procedure rather

than through the Runge-Kutta approach.

Consider the Adams' corrector formula* at time t+l,

[III-76] nt+ 1 = n t +h + 19 - 5 + nt-
24

where h is the Incremented time step,

Application of this formula to our system of equations gives

t+l = zt + _ AIj ZJ+l + 9 blk Ut+ 1

and manipulation yields the solution for all the zi at time step,

t+l

,z,[I E I]{,z,
-i

Note the requirement for z at time step t-2; hence, the require-

ment for a starter (e.g., Runge-Kutta) to initiate the solution

process.

F. Schied. "Theory and Problems of Numerical Analysis."

OutZin8 Se_88, McGraw-Hill Book Company, New York 1968.

Sd_ t8
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APPENDIX A--DEVELOPMENT OF THE INERTIAL INTEGRALS

[A-l]

[A-2]

[A-3]

[A-4]

[A-5]

.In the development of the equations of motion (Refer to Chapter

II, Sections B and D.) there are certain inertial integrals

identified that are required to account for the deformatlon-depen-

dent inertia matrix and that are involved in calculating the ef-

fects of centrifugal and Corlolis forces.

The basis for calculating these integrals is a triple matrix pro-

duct involving a so-called discrete mass matrix [M], which is as-

sembled by use of finite element techniques, and which may be used

in calculation of vibration modes. The other constituent of the

triple matrix product is a modal transformation that transforms

ordinary velocities, associated with the finite element model, to

the velocities of the {U}j vector.

Let us refer to the transformation as [¢], thus the triple matrix
product is

Ira] = [¢]T[M][_],

which is the basis of the kinetic energy expression of Equation

II-21. Now, the mass matrix [M] is invariable with respect to

the body's deformation. The modal transformation [$] does, how-

ever, depend on the {_} in a linear fashion, or we may expand
[_] as

[_] = [¢]o + [_+]'

with [_]o a matrix of constant elements and [A_] variable with

respect to deformation.

On substituting Equation A-2 into Equation A-I and referring to
Equation 11-86 it follows that

[mo] = [#o]T[M][_o ],

[ml]j _j = [A¢]T[M][_o ] + [_o]T[M][A#],

and

[m2]jk _j_k = [A_]T[M][A#]"
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[A-6]

[A-7]

Assume that the finite element model of the body has a "global"

cartesian frame in which the ordinary velocities are measured,

and further assume that the generalized coordinates of the finite

element model are grouped (or ordered) such that all the x-trans-

lations are together, followed by all the y- then z- translations,

and that the translations are followed by sets of x, y, and z ro-

tations. With this implied ordering, it follows that the discrete

mass matrix is partitioned in the form:

m m

[M] - m m m m m
mxx xy xz xp xq xr

m m m m m
yy yz yp yq yr

m m m • m
zz zp zq zr

m m m
pp pq pr

(SYMMETRIC) m m

i qq qrrr

with p, q, and r corresponding to rotation coordinates about x,

y, and z axes, respectively. Similarly, the modal transformation

is partitioned as

m

[¢] = {z+n z} -(y+ny} {i}

-{z+_ z} {x+n x} {i} [hy]

IY+Uy} -{x+n }i {i} [hz]x

{I} [o x]

{i} [_y]

{l}
m

Each square subpartltion of Equation A-6 has rows equal to the

number of structural Joints (collocation points) of the finite

element model, as does each subpartition of Equation A-7. The

submatrices in the last column partition of Equation A-7,

([hx] , [.. ], .-, [Oz]) , have columns equal to the number of
deformation modes used to represent the body and are matrices

of modal translation and rotation amplitudes.
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[A-8]

[A-9]

[A,10 ]

[A-II]

The form of [_o] and of [_] is seen immediately from Equation

A-7 in that the only nonzero parts of [4¢] are due to the {q}

vectors. The [_] matrix is effectively a kinematic velocity trans-

formation consistent with the form of Equation II-25, and it
follows that

and

{n x} - [hx](_] ,

{ny} = [hy]{_},

{n z} = [hz]{_}.

In the Equation A-4, there is seen the product of two constant

matrices_ namely [M][_o ]. The two triple products on the right

of Equation A-4 require evaluation of only the first three row

partitions of [M][_o ]. Thus let us define

(The first 9 row partitions of [M][#o]) -

t Y_I ,

pzk]IP..llI_..2tIPz31IP..,II_5
with, for example,

and

+[°d[Ox]+Io_][o_]+b_l[Oz]
It is unnecessary to expand each partition of Equation A-9; the

partial product is numerically obtained and the examples of Equa-

tions A-IO and A-If are Just for purposes of illustration.
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[A-12]

[A-Z3]

[A-14]

[A-15]

[A-L6]

[A-IT]

[A-ZS]

[A-19]

[A-20]

[A-21]

[A-22]

[A-23]

[A-24]

[A-25]

[A-26]

[A-27]

[A-28]

[A-29 ]

[A-30]

Now with reference to the intermediate constant matrices given

by Equation A-9 and the definitions of Equations A-4 and A-5, the

following inertial integrals are developed (the reader is urged

to refer back to Chapter II, Section D, particularly Equations

11-88 and 11-89):

[_.J-i'.4_.]-['.,J[_

ko.j-[,._-[,._j
I,.j-L,x,j_,]-t',,J[-]+[',,Jb]-b,J[",]
['_J['.,Jb]-L',,J[-]+['.,J['-]['-,J['-]

T T

[',=]"_,].['4.-5]['4
T T

['4"['.]['-,]-_ ['4
T T

[c4-[x][.,,j-[,,]['4
T T

[..J-[,_[°..][,]-[,.][-..]_
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[B-l]

[B-2]

[B-3]

APPENDIX B--DEVELOPMENT OF ROTATION TRANSFORMATIONS

There are 12 possible orthonormal rotation transformations, in

terms of Euler angles, that the analyst may choose from in order

to orient one orthogonal triad with respect to another. For each

one of the 12 orthonormal rotation transformations there is an

associated rotation transformation that is not orthonormal and

that is used to transform angular velocity projections (onto a

nonorthogonal vector basis), which are time derivatives of Euler

angles, to projections (onto an orthogonal vector basis) that

are commonly referred to as time derivatives of angular quasi-

coordinates (_x _ and' y _z)"

It is possible, for purposes of digital computation, to automate

the generation of these transformations, given a selected order

of rotation. It is the purpose of this appendix to indicate the

steps and numerical manipulations that are required. To this end,

let us consider one of the 12 types (say a 2-3-2 permutation) as _

an illustrative example.

Consider the two orthogonal vector bases, whose relative orienta-

tion we want to describe, to be

and

M

L_j

Now if %1, 82, and %3 are the three successive Euler rotations

about axes (2-3-2) respectively, then it follows that

{_) - [Zz]{_'}

= cose I

1

-sin81
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[B-4]

and

{e'} = [T 2]{e''}

 in0=oo,0 I/IF/
IIjL ,,j

[B-5]

[B-6]

{e--"} - [T3]{e}

: {COS@ 3

[-s in 03 cos0 dLkJ

On combining Equations B-3, B-4, and B-5 there results

{a} - [T I][T 2][T3]{e}.

Now, a 2-3-2 permutation means that the first rotation (8 I) is

about the 2nd axis of the {a} basis, the second rotation (82 ) is

about the 3rd axis of the {e'} basis and the third rotation (83 )

is about the 2nd axis of the {e"} basis.

Consider the following reference table, which shows the correla-.

tion between Euler rotations and the corresponding axis:

Table B-1 Correlation of Eulem Rotations and Axes

Type

81 about

8 2 about

O 3 about

1 2 3 4 5 6 7 8 9 l0

i,I i,I i,I 1,11 2,J 2,J 2,J 2,J 3,K 3,K
T

2,_" 2,_" 3,__ 3,i" 3,_" 3,_" i,¥" I,¥" i,¥" i,¥"

3,k" 1,i"' 1,Y" 2,J"' 1,'{" 2,'J" 2,J-" 3,k"' 2,J--" 3,k"'

ii 12

3,K 3,K

2j" 23-"

3,k" l,i

[_-7]

Now it is clear that the elementary rotation transformations ([TI],

[T2], and [T3]) always involve 81, e 2, 83 respectively, but any one

of them may have three different forms depending on the axis asso-

ciated with its rotation. That is, when 8i (i - i, 2, 3) is about

axis (1) then

cos{}i -sin8 ,

sine i cos8 i j

when 8 i is about axis (2),
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[s-s]

[B-9]

l-sfo0tloo_0_
and finally, when ei is about axis (3),

[Ti] = [cos8 i

sin8 i
-sinSi ] "
cos8 i

i

[B-10]

[B-I1]

[B'I2 ]

[B-!3]

Thus, it is evident that one need only specify a rotation type
(referring to Table B-l) and the three Euler rotations to create

his required orthonormal rotation transformation Equation B-6.

The associated rotational velocity transformations are developed

as follows. Consider, again, the 2-3-2 permutation. For this

case, it is possible to express the angular velocity vector
in two ways:

" i-_x+ _-_y+ _z

and as

U - T'61 + P'62 + ?'_3.

Combining Equations B-IO with B-II there results

or

{_) [_]{_),

I]rfJIIJIII! l:cose3j os02
= Lsln_ cos03 1 L0_]

or [_-]- [T3]T[A] T.

Now, the inverse tranformation of Equation B-12 is required for

hinge kinematics applications, or it is necessary to express

B-3



[B-14]

[B-Z5 ]

[B-16]

[B-Z7]

[_]-I = [A] T-lIT3]

-I

= ([E]-I [E] [A] T) IT3]

= ([E][A]T)-I[E][T3]

with [E] an elementary row interchange transformation, which for

the (2-3-2) example is

Ejit111]
and causes ([E][A] T) to be of the form:

such that

([E][A]T) -1 = [1/e

with _ - sin82,

and 8 = cos82.

The form of Equation B-17 is the same for all 12 types of Euler

rotations, which was the purpose of introducing [El, and this is

convenient with respect ot prograrm_Ing considerations. It follows

that

for types i, 5, 9 a = cosB2, 8 = sln82,

for types 2, 6, i0 _ = sin% 2, 8 = cos82;

for types 3, 7, Ii u --sin82, 8 = cos82,

and for types 4, 8, 12 _ fficos82, 8 " -sin82-

Also, for each of the 12 types, there is an elementary row inter-

change transformation [E] that can be constructed from simple

inspection of the permutation integers of Table B-I (2-3-2 for

example). In fact, it is unnecessary to actually construct [E]

because information to construct it is merely applied to [T3]

(interchanging its rows), which produces [E][T3]. Thus, the

velocity transformation of Equation B-14 can be created for any

one of the 12 possible types with comparative ease.
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APPENDIX C--TIME DERIVATIVES OF KINEMATIC COEFFICIENTS

[c-i]

[c-2]

[c-3]

[c-4]

[c-5]

The formulation and numerical implementation of motion equations

for the system of interconnected bodies involves a vector of La-

grange multipliers, {l} (Refer to Equations II-I and II-6). In

order to numerically evaluate {l} there is seen to be the require-

ment of calculating time derivatives of kinematic coefficients

(velocity transformations) associated with hinges.

With reference to Chapter II) Section C, it is noted that for

each hinge there is a [bp] and a [bq] matrix of kinematic coef-

ficients. The basic form of these matrices is repeated here,

then the sequence of steps necessary to develop their time deriv-

atives is indicated.

The [bp] array is

and

is::>]!I..I[_'4,',,
Now to develop [bp] and [bq] it is necessary to expand the fol-

lowing as :

'-,,,(_"-'Eq',,])-'_'-''lq.]+

.,([.'m]Es;>])-[,,,,.]''>'>"Ls.,,,
ddt (['n]-' [qRn])= [,-I] [qRn] + [,]-i [q'n]

[.q).
..[,,.,o]r,,,>,,>1Lmpj'

and
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[c-6] Fk(n)]d(b<n]r_<-,_)=[,_J[_._,,,]-,-[pq,.oq.,.-- Lnqjdt

[C-7]

[C-a]

[C-9]

[c-10]

[C-II]

The 3x3 matrix time derivatives defined by Equations C-3 through

C-6 have factors (also 3x3 matrix time derivatives) that are ex-

panded in terms of previously defined quantities as follows:

[,>t<<,]= r.<_'>L,>,,b]'
with

[r2(p)lp,,j-_'_"(?o](<,_+_op,<_:>)
- [pRq] [qRn] ({iOn} + [=q] {_n})),

[pl_ ,", [pR,q] [qRn] +_Rq] [qR'n],

[C-12]

[c-z3]

[C-14]

rap]

[_<-n-[_=.(<,,,<_.,/].nq j

Finally, =he time derivative of [_]-i requires additional consid-

eration. Refer to Appendix B.

The rotation transformation [_]-i is developed as

and it is shown that the form

 c_15 rl, ii]l
L-B/a 1

holds for each of the 12 possible Euler rotations. In that [E]

is constant, [_] depends only on 82 and [T3] depends only on 8 3,

it follows that
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[c-16] d__[_]-i. o2 _ [A] [E][T3]
dt

+ E .J)
where the Euler angle rates (82 and 03) are numerically evaluated

before their use in Equation C-16 through application of Equation

II-3; that is, they reside in that part of the state vector time

derivative {y} that has been evaluated.
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APPENDIX D--MONITOR OF SYSTEM MOMENTA AND ENERGIES

[D-l]

Development of state equations for predicting dynamic response of

a system of interconnected flexible bodies involves a consider-

able amount of complicated formulation and programming code. This

is certainly a true statement, independent of the particular

method of analytical mechanics on which one might select to base
development.

The inherent complexity of such a digital simulation program gives

rise to the question: is there any way of checking the program

validity? In an attempt to answer this question, one might sug-

gest comparing results with those of other dynamic simulations

or hardware tests. If such a comparison is positive, then cred-

ibility (to a degree) is established. However, there is another

absolutely necessary (if not sufficient) condition that must be

passed to establish validity. For a dynamic system free of ex-

ternal forces and torques, angular and linear momenta must be

conserved; also, total energy (kinetic plus potential) must not
increase in time.

It is a desirable feature for such a digital simulation program

to have a built-in monitor of momenta and energy. The purpose of

this appendix is to develop (in terms of previously identified

state variables and system parameters) the expressions for total

system angular and linear momentum vectors and the total system

energy.

The total angular momentum about the inertial reference can be

expressed (from definition) as

j=l vj

with the summation over the number of bodies (NB) of the system,

with _ being the vector positioning the elemental mass (dm) from

the inertial origin, with v being the absolute velocity of dm,

and with integration taken over the volume of the jth body (Vj).

Also, from definition, the total linear momentum with respect to
the inertial frame is

D-I



[D-2]

[D-3]

[D-4]

[D-5]

[D-6]

[D-7]

NB

J=l Vj.

Now, consistent with the notion of a body fixed axis system and

with a consistent velocity field assumed (Refer to Chapter II,

Section B.)j it follows tha£_ over the volume of the jth body,

m

_=x_j +p0+n,

and

On substituting Equations D-3 and D-4 into D-I and D-2 and integra-

ting, it becomes clear that the first six elements of the product

I+= 1

are projections of the jth body's angular and linear momentum

vectors onto the moving body axis system. In fact, {p } includes

the effect of momentum wheels (See Equation II-109), which surely

must be accounted for.

Thusj the angular momentum of the j%h body (about its body-origln)

is

while the linear momentum of the J
th

body is

reference triad,

D-2
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[D-8]

Now rotation transformations that relate vector components in

each body system to the inertial system exist; also, position

vector from the inertial origin to the reference point of each
body exists. It follows that

NB

Jffil

[D-9]

and that

NB

J-I

NB

J-I

The total angular and linear momentum vectors are calculated by

the program in the manner indicated in Equations D-8 and D-9. For

a variety of torque/force-free configurations that have been ex-

aminedj momentum has been conserved within acceptable numerical
tolerances.

[D-10]

The total energy is calculated (Refer to Equations 11-38 and II-
42. ) as

NB

T +V f½ _ ( Lujj [m]j _ lJ'U_ +

jffil

The kinetic energy contribution of embedded momentum wheels is

included (as it must be), because [m]j includes momentum wheel

inertial coupling terms and {U}j includes momentum wheel spin

rates (_s) .

Potential energy, additional to that shown in Equation D-10, comes

about in the event that there is a "sprung" hinge; say for examplej

associated with the 8k coordinate. If the spring force/torque is

linear with 8k_ then additional potential energy is

[D-If] V( "½k_ &82.additional) k D-3



APPENDIX E--ROOT LOCUS SOLUTION TECHNIQUES

[E-1]

[E-2]

[E-3]

The Root Locus solution procedure that is included in the digital

program was supplied by Goddard Space Flight Center (GSFC) per-

sonnel and is included here for completeness. The following dis-

cussion has been extracted from GSFC Branch Report No 254 dated

October 2, 1973 (Mr. Raymond V. Welch, author).

Two expressions are identified as the basis for initiating the

solution process.

s)(s) = 180 ° K Z 0

Expressions E-I and E-2 contain polynomlnal expressions for the

conventional open loop expression

KG(s) H(s) = KP(s)/Q(s).

The solution process requires a starting point (known to lie

somewhere on the loci) from which to generate the desired locus;

therefore, assume there exists a known value of s, say So, such
that

[E-4]

[E-5]

(So)
= 180 °

/ Q(So)

i.e., s is a point on the locus. A good starting point might be
o

an open loop pole or zero as these points are usually known a

p_oz_L; however, any point along the branch of the locus to be

determined may be used. The locus is then traced using the fol-

lowing procedure.

Draw a "small" circle of radius r centered at s and define s
O C

to be the values of s which lle on this circle (See Figure E-I.).

These values of s are determined analytically by:
C

s = s + re j0

C O

E-I
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[E-6]

where 8 is meausred as the angle generated by a counterclockwise

rotation from the positive real axis of the s-plane. If the locus

does not terminate inside the circle, then there must exist at

least two values of 8 between zero and 360 degrees such that

/_ sc) 180 °

SC )

(More than two values of 8 will exist that satisfy this equation
if breakway points of the locus are encircled or if the circle is

large enough to intersect other branches of the locus. Consequently,

to avoid changing branches, r must be kept smaller than the distance

between the branches of the locus). Suppose that for 8 = e I and

0 - 8 2 the above equation is satisfied, then Scl and Sc2 are points

on the locus where

[E-7] = + reJgl
Scl s o

Sc2 = so + re j82

See Figure E-I. These roots are found by an iterative process.

Define _(8) by

[E-8]

[E-9]

(sc)

where s is defined above and 8 is any arbitrary angle. If _(8)
c

does not equal 180 degrees increment 8 by A8 and reevaluate _(8).

Continue this process until _(8) passes through 180 degrees.

(_(8) is a monotonic function across the locus, thus _(e) crossing

180 degrees implies the locus has been crossed). When _(0) passes

through 180 degrees, redefine A% as

A8 = -KA8 " 0<K<l
new old'

and again calculate _(8). If _(8) does not equal 180 degrees for

this point, increment 8 by this new A8 and recalculate _(8). Con-

tinue this process until _(8) again crosses 180 degrees. Reduce A8

again as above and repeat the previous operation until A8 = 6,

where _ is some predefined small positive number. At this time

4(8) will be 180 ±E degrees, where e is a "small" angle whose size

is a function of 5; thus a root on the locus has been found. This

root is either Scl or Sc2 , depending on the initial choice of 8

and on the initial sign of AS. For this subprogram, the initial

E-2
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G _"

[E-lO]

[E-n]

[E-12]

value of 8 is optional, but if no choice is made a value of 180

degrees is used. Also the initial increment A0 is set at I0 de-

grees with the change in 4e for every 180 degrees crossing defined

by

1
48

new -1-0"4Cold

It was found that _ = I0 -B degrees was sufficiently small to

insure e< .001 degrees except possibly for values of s near the

open loop poles or zeros. Assume that 8 is chosen initially so

that the root found is located at the point s _ as deflned above
C

• and as shown in Figure E-l, and suppose it is _eslred to continue

the locus in this direction.

Draw a circle of radius _ centered at Scl. Again if the locus

does not terminate inside the circle, the locus will intersect

the circle in at least two points. Because the circles located

at So and Scl are of equal radius, one of these points is So as

shown in Figure E-2. This root is eliminated from the search

routine by restricting the range of 8 to

81 -120 ° <8 <81 +120 °

These limits are chosen as they are the points where the circles

located at so and Scl intersect. Thus the search for a new root

is conducted only in a previously unsearched region. The initial

angle is chosen at 8 - 81 - 120 degrees with 4B>o and step 2 is

repeated until 48 - 6, i.e., another root is found.

Draw a circle of radius r centered at the root found in the pre-

vious step and repeat Step 2 with the restrictions on 8 as defined

in Step 3.

Repeating Step 4, the roots alone one branch of the locus are de-

termined. The value of the gain, K, for each of these roots is

calculated from

K ,, F(s) "

E-5
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